

Lothar Heinrich

## Some older and newer results on Brillinger-mixing point processes

We consider a stationary infinite-order point process  $\Psi \sim P$  on  $\mathbb{R}^d$  satisfying the additional assumption that, for each  $k \geq 2$ , the reduced kth-order factorial cumulant measure  $\gamma_{red}^{(k)}(\cdot)$  has finite total variation  $||\gamma_{red}^{(k)}||_{TV}$  on  $(\mathbb{R}^d)^{k-1}$ . This property of  $\Psi$ , which is attributed to D. R. Brillinger, expresses weak mutual correlations between the numbers of atoms taking the counting measure  $\Psi$  in distant sets. This condition allows to prove asymptotic normality of shot noise processes, higher-order moment measure estimators (e.g. the empirical K-function), empirical product densities etc. Furthermore, CLTs for hyperplane processes driven by a one-dimensional B-mixing pp can be established.  $\Psi \sim P$  is called *strongly B-mixing* if  $||\gamma_{red}^{(k)}||_{TV} \leq a^k k!$  for some a > 0 and any  $k \geq 2$ . We show that a *B-mixing* pp  $\Psi \sim P$  is *mixing* iff P is uniquely determined by its one-dimensional moment sequences. If there is no uniqueness then  $\Psi \sim P$  need not be *ergodic* in general, see [1]. On the other hand, if the pp  $\Psi \sim P$  is strongly B-mixing then its tail- $\sigma$ -algebra of  $\Psi$  is trivial. Finally, we show that a Log-Gaussian Cox process is B-mixing if the covariance function  $c(\cdot)$  of the underlying stationary Gaussian field is absolutely integrable and conditions are formulated implying that a renewal pp is strongly B-mixing.

## References

[1] L Heinrich (2018) Brillinger-mixing point processes need not to be ergodic. *Stat and Prob Letters* **138**, 31–55.