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1. General valuations

The natural domain for a valuation is a lattice.

In geometry, however, the following appears more frequently.

An intersectional family is a family S of sets such that

A,B ∈ S ⇒ A ∩ B ∈ S, ∅ ∈ S.

Definition: A function ϕ from an intersectional family S into an
abelian group is called additive or a valuation if

ϕ(A ∪ B) + ϕ(A ∩ B) = ϕ(A) + ϕ(B) (1)

for all A,B ∈ S with A ∪ B ∈ S, and ϕ(∅) = 0.

Example: ϕ(A) = 1A (characteristic function)
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The family U(S) of all finite unions of elements from S is a
lattice (with ∪ and ∩).

When does a valuation ϕ on S have an extension to a valuation
on U(S)?

Necessary is the inclusion-exclusion formula

ϕ(A1 ∪ · · · ∪ Am) =
m∑

r=1

(−1)r−1
∑

1≤i1<···<ir≤m

ϕ(Ai1 ∩ · · · ∩ Air ),

for m ∈ N and A1, . . . ,Am ∈ U(S) (easy inductive proof).

Assumption: ϕ is a function from an intersectional family S
into an abelian group, with ϕ(∅) = 0.

Definition: ϕ is fully additive if the inclusion-exclusion formula
holds for all A1, . . . ,Am ∈ S with A1 ∪ · · · ∪ Am ∈ S and for all
m ∈ N.
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U•(S) denotes the Z-module spanned by the characteristic
functions of the elements of S.

Theorem 1.1 (Groemer’s (1978) first extension theorem) The
following conditions are equivalent.

(a) ϕ is fully additive.

(b) If
n11A1 + · · ·+ nm1Am = 0

with Ai ∈ S and ni ∈ Z (i = 1, . . . ,m), then

n1ϕ(A1) + · · ·+ nmϕ(Am) = 0.

(c) The functional ϕ• defined by ϕ•(1A) := ϕ(A) for A ∈ S has a
Z-linear extension to the module U•(S).

(d) ϕ has an additive extension to the lattice U(S).
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Variation (Groemer):

If ϕ maps into a real vector space, the same holds with
• Z replaced by R,
• U•(S) replaced by V (S), the real vector space spanned by
the characteristic functions of the elements of S,
• Z-linear by R-linear.

In this case, if ϕ is fully additive, then Groemer defined the
ϕ-integral of a function f ∈ V (S),

f = a11A1 + · · ·+ am1Am , a1, . . . ,am ∈ R,

by ∫
f dϕ := a1ϕ(A1) + · · ·+ amϕ(Am).
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2. Valuations on polytopes

Now everything in Rn (scalar product 〈·, ·〉 norm ‖ · ‖)

Kn set of convex bodies in Rn

Pn set of convex polytopes in Rn

Real valuations on polytopes are closely tied up with
dissections of polytopes.

Definition: A dissection of the polytope P ∈ Pn is a set
{P1, . . . ,Pm} of polytopes such that P =

⋃m
i=1 Pi and

dim(Pi ∩ Pj) < n for i 6= j .

Assumption: G a subgroup of the affine group of Rn

Definition: P,Q ∈ Pn are G-equidissectable if there are
dissections {P1, . . . ,Pm} of P and {Q1, . . . ,Qm} of Q such that
Qi = giPi with suitable g1, . . . ,gm ∈ G, i = 1, . . . ,m.
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Most considered:
Gn = group of rigid motions of Rn

Tn = group of translations of Rn

An old example:

Theorem (Bolyai–Gerwien, 1833/35) Any two polygons of the
same area in P2 are G2-equidissectable.

Hilbert’s third problem (1900): Is there an analogous result in
three dimensions?

Dehn’s (1900) negative answer is a beautiful application of
valuations.

We describe it in a modified form, to introduce some further
facts about valuations.
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Definition: The function ϕ on Pn is weakly additive (or a weak
valuation) if for each P ∈ Pn and each hyperplane H, bounding
the two closed halfspaces H+,H−,

ϕ(P) = ϕ(P ∩ H+) + ϕ(P ∩ H−)− ϕ(P ∩ H).

Theorem 2.1 Every weak valuation on Pn is fully additive.

Definition: A valuation ϕ on Kn or Pn is simple if ϕ(A) = 0
whenever dim A < n.

Definition: ϕ is G-invariant if ϕ(gA) = ϕ(A) for all g ∈ G and
all A in the domain of ϕ.
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Lemma 2.1 If ϕ is a G-invariant simple valuation on Pn and if
the polytopes P,Q ∈ Pn are G-equidissectable, then
ϕ(P) = ϕ(Q).

Proof: By Theorem 2.1, the valuation ϕ has an additive
extension to U(Pn), hence the inclusion-exclusion formula can
be applied to dissections {P1, . . . ,Pm} of P and {Q1, . . . ,Qm}
of Q, satisfying giPi = Qi for gi ∈ G.

Since ϕ is simple, the terms ϕ(Ai1 ∩ · · · ∩ Air ) with r > 1 vanish,
and what remains is

ϕ(P) = ϕ(P1 ∪ · · · ∪ Pm) = ϕ(P1) + · · ·+ ϕ(Pm)

= ϕ(g1P1) + · · ·+ ϕ(gmPm) = ϕ(g1P1 ∪ · · · ∪ gmPm)

= ϕ(Q1 ∪ · · · ∪Qm) = ϕ(Q).

2
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Consequence: negative answer to Hilbert’s third problem

Define

ϕ(P) :=
∑

F∈F1(P)

V1(F )f (γ(P,F )) for P ∈ P3,

where
f (x + y) = f (x) + f (y) for x , y ∈ R,

satisfying
f (π/2) = 0 f (α) 6= 0,

for α = external angle of a regular tetrahedron T at one of its
edges.

Then ϕ is weakly additive (⇒ fully additive) and simple, and

ϕ(cube) = 0 6= ϕ(regular tetrahedron).
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A surprising positive result:

Theorem 2.2 (Hadwiger 1950) Any two parallelotopes of equal
volume in Rn are Tn-equidissectable.

A further extension theorem:

Definition: A relatively open polytope (or ro-polytope) is the
relative interior of a convex polytope. Pn

ro is set of ro-polytopes.
The elements of U(Pn

ro) are called ro-polyhedra.

Theorem 2.3 Any weak valuation on Pn has an additive
extension to U(Pn

ro).

This is helpful to prove the following fundamental result.
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Theorem 2.4 Let ϕ be a translation invariant valuation on Pn

with values in a rational vector space X. Then

ϕ(λP) =
n∑

r=0

λrϕr (P) for P ∈ Pn and rational λ ≥ 0.

Here ϕr : Pn → X is a translation invariant valuation which is
rational homogeneous of degree r (r = 0, . . . ,n).

Setting λ = 1, gives

ϕ = ϕ0 + · · ·+ ϕn,

the McMullen decomposition.
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Historical note. Theorem 2.4 was already stated by Hadwiger
(1945), but without proof.

His later work gives a proof of the decomposition only for
simple valuations.

The question for the general result was posed by McMullen
(1974), at an Oberwolfach conference.

Proofs by McMullen (1974), Meier (1977), Spiegel (1978).

Later proofs of generalizations by Pukhlikov and Khovanskii
(1992), Alesker (1998).
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Consequence: A polynomial expansion under Minkowski
addition

Theorem 2.5 Let ϕ : Pn → X (a rational vector space) be a
translation invariant valuation which is rational homogeneous of
degree m ∈ {1, . . . ,n}. Then there is a polynomial expansion

ϕ(λ1P1 + · · ·+ λkPk )

=
m∑

r1,...,rk =0

(
m

r1 . . . rk

)
λr1

1 · · ·λ
rk
k ϕ(P1, . . . ,P1︸ ︷︷ ︸

r1

, . . . ,Pk , . . . ,Pk︸ ︷︷ ︸
rk

),

for all P1, . . . ,Pk ∈ Pn and all rational λ1, . . . , λk ≥ 0.

Here ϕ : (Pn)m → X is a symmetric mapping, which is
translation invariant and Minkowski additive in each variable.
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Representation results for translation invariant valuations:

There are representation results for weakly continuous
valuations on polytopes, by Hadwiger (1952), McMullen (1983).

Two characterizations of the volume, Vn, from Hadwiger’s
(1957) book:

Theorem 2.6 Let ϕ : Pn → R be a translation invariant
valuation which is simple and nonnegative.
Then ϕ = cVn with a constant c.

Theorem 2.7 Let ϕ : Pn → R be a translation invariant
valuation which is homogeneous of degree n.
Then ϕ = cVn with a constant c.

16 / 43



3. Examples of valuations from convex geometry

• The identity mapping Kn → Kn

Note that Kn with Minkowski addition is an abelian semigroup
with cancellation law, and that

(K ∪ L) + (K ∩ L) = K + L

if K ,L,K ∪ L ∈ Kn.

• A mapping ϕ from Kn into an abelian group is Minkowski
additive if it satisfies

ϕ(K + L) = ϕ(K ) + ϕ(L), K ,L ∈ Kn.

Every such mapping is a valuation, in fact fully additive.

• In particular, the support function h(K , ·) = hK , defined by
h(K ,u) := max{〈u, x〉 : x ∈ K}, yields a valuation.
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• Mixed volume valuations

The mixed volume V : (Kn)n → R is defined by

Vn(λ1K1 + · · ·+ λmKm) =
m∑

i1,...,in=1

λi1 · · ·λinV (Ki1 , . . . ,Kin )

for m ∈ N, K1, . . . ,Km ∈ Kn, λ1, . . . , λm ≥ 0 (and symmetry).

For p ∈ {1, . . . ,n} and fixed Mp+1, . . . ,Mn ∈ Kn,

ϕ(K ) := V (K , . . . ,K︸ ︷︷ ︸
p

,Mp+1, . . . ,Mn), K ∈ Kn,

defines a valuation ϕ.
It is translation invariant, continuous, and homogeneous of
degree p.
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• Intrinsic volumes

Let

κn =
π

n
2

Γ
(
1 + n

2

) , ωn = nκn =
2π

n
2

Γ
(n

2

) .
The special mixed volume valuation

Vj(K ) :=

(n
j

)
κn−j

V (K , . . . ,K︸ ︷︷ ︸
j

,Bn, . . . ,Bn︸ ︷︷ ︸
n−j

),

defined by the Steiner formula

Vn(K + ρBn) =
n∑

j=0

ρn−jκn−jVj(K ), ρ ≥ 0,

is the j th intrinsic volume. It is rigid motion invariant.
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• Support and curvature measures

For K ∈ Kn and x ∈ Rn \ K , let
d(K , x) be the distance of x from K ,
p(K , x) ∈ K the point realizing the distance,
u(K , x) := (x − p(K , x))/d(K , x), unit vector from p(K , x) to x .

Let Σn := Rn × Sn−1 and η ∈ B(Σn) (B = Borel sets).

The local parallel set

Mρ(K , η) := {x ∈ Rn : 0 < d(K , x) ≤ ρ and (p(K , x),u(K , x)) ∈ η}

has (n-dimensional Hausdorff) measure

Hn(Mρ(K , η)) =
n−1∑
j=0

ρn−jκn−jΛj(K , η) for ρ ≥ 0.

This defines finite measures Λ0(K , ·), . . . , Λn−1(K , ·) on Σn.

20 / 43



Λj(K , ·) is the j th support measure of K .

The map K 7→ Λj(K , ·) is a valuation, with values in the vector
space of finite signed Borel mesures on Σn.

Cj(K , β) :=
nκn−j(n

j

) Λj(K , β × Sn−1), β ∈ B(Rn),

defines the j th curvature measure of K , supplemented by

Cn(K , β) := Hn(K ∩ β).

Sj(K , ω) :=
nκn−j(n

j

) Λj(K ,Rn × ω), ω ⊂ B(Sn−1),

defines the j th area measure of K .
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4. Continuous valuations on convex bodies

Continuity on Kn refers to the Hausdorff metric.

All the valuations in Sec. 3 have continuity and invariance
properties.

Theorem 4.1 (Groemer’s second extension theorem) Every
continuous valuation on Kn with values in a topological vector
space has an additive extension to the lattice U(Kn).

Assumption: ϕ translation invariant, continuous valuation on
Kn, with values in a topological vector space

Then

ϕ(λK ) =
n∑

i=0

λiϕi(K ) for K ∈ Kn and λ ≥ 0,

with ϕi continuous and homogeneous of degree i .
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If ϕ is homogeneous of degree m, then

ϕ(λ1K1 + · · ·+ λkKk )

=
m∑

r1,...,rk =0

(
m

r1 . . . rk

)
λr1

1 · · ·λ
rk
k ϕ(K1, . . . ,K1︸ ︷︷ ︸

r1

, . . . ,Kk , . . . ,Kk︸ ︷︷ ︸
rk

)

for K1, . . . ,Kk ∈ Kn and λ1, . . . , λk ≥ 0.

The mapping

K 7→ ϕ(K , . . . ,K︸ ︷︷ ︸
r

,Mr+1, . . . ,Mm), (2)

with fixed convex bodies Mr+1, . . . ,Mm, is a continuous,
translation invariant valuation, homogeneous of degree r .
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A second historical incentive

Consider the kinematic integral

ψ(K ,M) :=

∫
Gn

χ(K ∩ gM)µ(dg)

for K ,M ∈ Kn, where χ is the Euler characteristic and µ is the
Haar measure on Gn.

The result is

ψ(K ,M) =
n∑

i,j=0

cijVi(K )Vj(M).

Blaschke (1939) noticed that in his proof (of a special case) the
valuation property of the Vj played an important role.

He suggested, therefore, that the intrinsic volumes might be
characterized by additivity, rigid motion invariance, and local
boundedness. He did not succeed with a proof.
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In fact, on Kn, local boundedness is not a suitable assumption.

However, with continuity instead, Hadwiger (1951/52)
succeeded:

Theorem 4.2 (Hadwiger’s characterization theorem)
If ϕ : Kn → R is a continuous, rigid motion invariant valuation,
then there are constants c0, . . . , cn such that

ϕ(K ) =
n∑

j=0

cjVj(K )

for all K ∈ Kn.

A slightly simplified version of his proof: Chen (2004)

A considerably shorter, elegant proof: Klain (1995)

Hadwiger (1950, 1956) made many integral-geometric
applications of his characterization.
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Example: Consider

ψ(K ,M) :=

∫
Gn

χ(K ∩ gM)µ(dg).

For fixed K , the function ψ(K , ·) satifies the assumptions of
Theorem 4.2, hence

ψ(K ,M) =
n∑

j=0

cj(K )Vj(M).

Repeat the argument with variable K , to obtain that

ψ(K ,M) =
n∑

j=0

cijVi(K )Vj(M).

The constants cij can be determined by applying the formula to
balls of different radii.
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Translation invariant valuations

Val the real vector space of translation invariant, continuous
real valuations on Kn

Valm the subspace of valuations that are homogeneous of
degree m
Val+m the subset of even valuations
Val−m the subset of odd valuations

ϕ is even if ϕ(−K ) = ϕ(K ), and odd if ϕ(−K ) = −ϕ(K ), for all
K in the domain of ϕ.

Then, by the McMullen decomposition (and trivially)

Val =
n⊕

m=0

Valm, Valm = Val+m ⊕ Val−m.
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Some classification results concerning Val

Val0 is spanned by the Euler characteristic,

Valn is spanned by the volume.

Theorem 4.3 (McMullen 1980) Each ϕ ∈ Valn−1 has a
representation

ϕ(K ) =

∫
Sn−1

f (u) Sn−1(K , du) for K ∈ Kn,

with a continuous function f : Sn−1 → R. This function is
uniquely determined up to adding the restriction of a linear
function.

Theorem 4.4 (Klain 1995) If ϕ ∈ Val+ is simple, then
ϕ(K ) = cVn(K ) for K ∈ Kn, with some constant c.
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Theorem 4.5 (R.S. 1996) If ϕ ∈ Val− is simple, then

ϕ(K ) =

∫
Sn−1

g(u) Sn−1(K , du) for K ∈ Kn,

with an odd continuous function g : Sn−1 → R.

Klain’s volume characterization (Theorem 4.4) has a useful
consequence:

G(n,m) the Grassmannian

If ϕ ∈ Valm and L ∈ G(n,m), then ϕ(K ) = cϕ(L)Vm(K ) for
K ⊂ L, with a real constant cϕ(L). This defines the (continuous)
Klain function cϕ : G(n,m)→ R.

Theorem 4.6 A valuation in Val+m (m ∈ {1, . . . ,n − 1}) is
uniquely determined by its Klain function.
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5. Measure-valued valuations

Recall that the support measures on Σn := Rn × Sn−1,

Λ0(K , ·), . . . , Λn−1(K , ·),

are defined by

Hn(Mρ(K , η)) =
n−1∑
j=0

ρn−jκn−jΛj(K , η).

As functions of K , they are valuations and weakly continuous.

The latter means that Ki → K in the Hausdorff metric implies

lim
i→∞

∫
Σn

f dΛm(Ki , ·) =

∫
Σn

f dΛm(K , ·)

for every continuous function f : Σn → R.
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The measure Λj(K , ·) is concentrated on the normal bundle
Nor K of K .

Valuation property and weak continuity carry over to the
mappings Cj and Sj .

The curvature measure Cj(K , ·) is a Borel measure on Rn,
concentrated on bd K for j ≤ n − 1, and on K for j = n.

The area measure Sj(K , ·) is a Borel measure on the unit
sphere Sn−1.

Behaviour under the motion group:
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For g ∈ Gn, let g0 be the rotation part (that is, gx = g0x + t for
x ∈ Rn). Define

gη := {(gx ,g0u) : (x ,u) ∈ η} for η ⊂ Σn,

gβ := {gx : x ∈ β} for β ⊂ Rn,

gω := {g0u : u ∈ ω} for ω ⊂ Sn−1.

Then

Λj(gK ,gη) = Λj(K , η),

Cj(gK ,gβ) = Cj(K , β)

Sj(gK ,gω) = Sj(K , ω).

In each case, we call this rigid motion equivariance.
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Characterization theorems à la Hadwiger:

Theorem 5.1 (R.S. 1978) Let ϕ be a map from Kn into the set
of finite Borel measures on Rn, such that:
(a) ϕ is a valuation,
(b) ϕ is rigid motion equivariant,
(c) ϕ is weakly continuous,
(d) ϕ is locally determined, which means: if β ⊂ Rn is open and
K ∩ β = L ∩ β, then ϕ(K , β′) = ϕ(L, β′) for every Borel set
β′ ⊂ β.
Then

ϕ(K , β) =
n∑

i=0

ciCi(K , β)

with c0, . . . , cn ≥ 0, for K ∈ Kn and β ∈ B(Rn).
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Theorem 5.2 (R.S. 1975) Let ϕ be a map from Kn into the set
of finite signed Borel measures on Sn−1, such that
(a) ϕ is a valuation,
(b) ϕ is rigid motion equivariant,
(c) ϕ is weakly continuous,
(d) ϕ is locally determined, which means: if ω ⊂ Sn−1 is a Borel
set and if τ(K , ω) = τ(L, ω), then ϕ(K , ω) = ϕ(L, ω).
Then

ϕ(K , ω) =
n−1∑
i=0

ciSi(K , ω)

with real constants c0, . . . , cn−1, for K ∈ Kn and ω ∈ B(Sn−1).

τ(K , ω) is the inverse spherical image of K at ω.
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Theorem 5.3 (Glasauer 1997) Let ϕ be a map from Pn into the
set of finite signed Borel measures on Σn, such that:
(a) ϕ is rigid motion equivariant,
(b) ϕ is locally determined, which means: if η ∈ B(Σn) and
K ,L ∈ Kn satisfy η ∩ Nor K = η ∩ Nor L, then ϕ(K , η) = ϕ(L, η).
Then

ϕ(K , η) =
n−1∑
j=0

cjΛj(K , η)

with real constants c0, . . . , cn−1, for K ∈ Kn and η ∈ B(Σn).

Note that the valuation property need not be assumed here.
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6. Tensor-valued valuations

Recall that the intrinsic volumes were derived from the volume,

Vn(K + ρBn) =
n∑

j=0

ρn−jκn−jVj(K ).

It is natural to replace the volume

Vn(K ) =

∫
K

dx

by the moment vector ∫
K

x dx

or by higher moments, for example∫
K
〈x ,ei〉〈x ,ej〉 dx ,

that is, by tensor-valued functionals.
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Conventions about tensors

We use the scalar product 〈·, ·〉 to identify Rn with its dual
space. Hence, we don’t distinguish between covariant and
contravariant tensors.

Thus, an r -tensor, or tensor of rank r , on Rn is an r -linear
mapping from (Rn)r to R.

It is symmetric if it is independent under permutation of its
arguments.

Let T r denote the real vector space (with its standard topology)
of symmetric r -tensors on Rn.

By definition, T0 = R, and by identification, T1 = Rn.
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The symmetric tensor product of a ∈ T r and b ∈ Ts is defined
by

(a� b)(x1, . . . , xr+s)

:=
1

(r + s)!

∑
σ∈S(r+s)

a(xσ(1), . . . , xσ(r))b(xσ(r+1), . . . , xσ(r+s)),

where S(k) denotes the group of permutations of the numbers
1, . . . , k .

Thus a� b ∈ T r+s.

The symmetric tensor product extends in an obvious way to
more than two factors.

Abbreviations:

a� b =: ab, a� · · · � a︸ ︷︷ ︸
r

=: ar , a0 := 1.
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Example: for a vector a ∈ Rn, the r -tensor ar is given by

ar (x1, . . . , xr ) = 〈a, x1〉 · · · 〈a, xr 〉, x1, . . . , xr ∈ Rn.

The scalar product,

Q(x , y) = 〈x , y〉, x , y ∈ Rn,

is a symmetric tensor of rank two, the metric tensor.

Let (e1, . . . ,en) be an orthonormal basis of Rn. For an r -tensor
T ∈ T r , let

ti1...ir := T (ei1 , . . . ,eir ).

Then
T =

∑
1≤i1≤···≤ir≤n

ti1...ir ei1 · · · eir

is the coordinate representation of T .
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T =

∑
1≤i1≤···≤ir≤n

ti1...ir ei1 · · · eir

is the coordinate representation of T .

39 / 43



Example: for a vector a ∈ Rn, the r -tensor ar is given by

ar (x1, . . . , xr ) = 〈a, x1〉 · · · 〈a, xr 〉, x1, . . . , xr ∈ Rn.

The scalar product,

Q(x , y) = 〈x , y〉, x , y ∈ Rn,

is a symmetric tensor of rank two, the metric tensor.

Let (e1, . . . ,en) be an orthonormal basis of Rn. For an r -tensor
T ∈ T r , let

ti1...ir := T (ei1 , . . . ,eir ).

Then
T =

∑
1≤i1≤···≤ir≤n

ti1...ir ei1 · · · eir

is the coordinate representation of T .

39 / 43



Moment and Minkowski tensors

Definition: 6.1 For r ∈ N0, the r th moment tensor is defined
by

Ψr (K ) :=
1
r !

∫
K

x r dx , K ∈ Kn.

Thus, Ψr (K ) ∈ T r . Explicitly

Ψr (K )(y1, . . . , yr ) =
1
r !

∫
K
〈x , y1〉 · · · 〈x , yr 〉 dx

for y1, . . . , yr ∈ Rn.

Ψr : Kn → T r is a simple valuation.

The factor 1/r ! is for convenience.
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Translation behaviour:

Ψr (K + t) =
r∑

j=0

1
j!

Ψr−j(K )t j .

This is called polynomial behaviour, but remember that

Ψr−j(K )t j = Ψr−j(K )� t � · · · � t︸ ︷︷ ︸
j

.

Rotation behaviour: For ϑ ∈ O(n),

Ψr (ϑK ) = ϑΨr (K ),

where the operation of O(n) on T r is defined by

(ϑa)(y1, . . . , yr ) = a(ϑ−1y1, . . . , ϑ
−1yr )

for a ∈ T r .
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Definition: 6.2 The Minkowski tensors are defined by

Φr ,s
k (K ) :=

1
r !s!

ωn−k

ωn−k+s

∫
Σn

x r us Λk (K , d(x ,u))

for k = 1, . . . ,n − 1 and r , s ∈ N0. Further,

Φr ,0
n (K ) := Ψr (K ).

Again, the normalizing factors are for convenience.

The definition

Φr ,s
k := 0 if k /∈ {0, . . . ,n} or r /∈ N0 or s /∈ N0 or k = n, s 6= 0

will allow us to extend some summations formally over all
nonnegative integers.
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Now we can formulate a Steiner-type formula.

Theorem 6.1 For r ∈ N0, K ∈ Kn and ρ ≥ 0,

Ψr (K + ρBn) =
n+r∑
k=0

ρn+r−kκn+r−kV (r)
k (K ),

where
V (r)

k =
∑
s∈N0

Φr−s,s
k−r+s.

For k = 0, this reduces to the ordinary Steiner formula.
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