Topics in geometric inference Lecture I: Voronoi covariance measure

Quentin Mérigot CNRS / Université Paris-Dauphine

Joint works with F. Chazal, D. Cohen-Steiner, L. Cuel, L. Guibas, J.O Lachaud, M. Ovsjanikov and B. Thibert

Workshop on Tensor Valuations in Stochastic Geometry and Imaging 21–26 September 2014, Sandbjerg Estate, Sønderborg, Denmark

Geometric inference

Given: — An unknown object K (compact set) in \mathbb{R}^d

— A finite point set $P \subseteq \mathbb{R}^d$ approximating K.

What amount of the topology and geometry of K can we recover from P ?

- 1. Tube formulas, curvature measures and their stability
- 2. Voronoi covariance measure
- 3. Distance to a measure and generalized VCM
- 4. Computations

1. Tube formulas and curvature measures

Distance function: $d_P : x \in \mathbb{R}^d \mapsto \min_{p \in P} ||x - p||$

Distance function: $d_P : x \in \mathbb{R}^d \mapsto \min_{p \in P} ||x - p||$

Theorem (Steiner-Minkowski): For every compact convex subset K of \mathbb{R}^d , the function $r \mapsto \mathcal{H}^d(K^r)$ is a degree d polynomial.

Theorem (Steiner-Minkowski): For every compact convex subset K of \mathbb{R}^d , the function $r \mapsto \mathcal{H}^d(K^r)$ is a degree d polynomial.

Example: for a polygon $P \subseteq \mathbb{R}^2$: $\mathcal{H}^2(P^r) = \mathcal{H}^2(P) + r\mathcal{H}^1(\partial P) + r^2\pi$

Theorem (Steiner-Minkowski): For every compact convex subset K of \mathbb{R}^d , the function $r \mapsto \mathcal{H}^d(K^r)$ is a degree d polynomial.

Example: for a polygon $P \subseteq \mathbb{R}^2$: $\mathcal{H}^2(P^r) = \mathcal{H}^2(P) + r\mathcal{H}^1(\partial P) + r^2\pi$

Theorem (Weyl): If $K \subseteq \mathbb{R}^d$ is a domain with smooth boundary M, then $r \mapsto \operatorname{vol}^d(K^r)$ is a degree d polynomial on [0, R] for some R > 0.

Theorem (Steiner-Minkowski): For every compact convex subset K of \mathbb{R}^d , the function $r \mapsto \mathcal{H}^d(K^r)$ is a degree d polynomial.

Example: for a polygon $P \subseteq \mathbb{R}^2$: $\mathcal{H}^2(P^r) = \mathcal{H}^2(P) + r\mathcal{H}^1(\partial P) + r^2\pi$

Theorem (Weyl): If $K \subseteq \mathbb{R}^d$ is a domain with smooth boundary M, then $r \mapsto \operatorname{vol}^d(K^r)$ is a degree d polynomial on [0, R] for some R > 0.

Example: if K is bounded by a smooth surface S in \mathbb{R}^3 ,

$$\mathcal{H}^3(K^r) = \mathcal{H}^3(K) + r\Phi_K^2 + r^2\Phi_K^1 + r^3\Phi_K^0$$

Theorem (Steiner-Minkowski): For every compact convex subset K of \mathbb{R}^d , the function $r \mapsto \mathcal{H}^d(K^r)$ is a degree d polynomial.

Example: for a polygon $P \subseteq \mathbb{R}^2$: $\mathcal{H}^2(P^r) = \mathcal{H}^2(P) + r\mathcal{H}^1(\partial P) + r^2\pi$

Theorem (Weyl): If $K \subseteq \mathbb{R}^d$ is a domain with smooth boundary M, then $r \mapsto \operatorname{vol}^d(K^r)$ is a degree d polynomial on [0, R] for some R > 0.

Example: if K is bounded by a smooth surface S in \mathbb{R}^3 ,

$$\Phi_K^2 = \operatorname{area}(S)$$

 $\mathcal{H}^3(K^r) = \mathcal{H}^3(K) + r\Phi_K^2 + r^2\Phi_K^1 + r^3\Phi_K^0$

 $\Phi_K^1 = \text{tot.}$ mean curvature $\Phi_K^0 = \text{tot.}$ Gaussian curvature

Definition: The medial axis of $K \subseteq \mathbb{R}^d$ is $\mathcal{M}(K) := \{x \in \mathbb{R}^d; \ \# \operatorname{proj}_K(x) > 1\}$

$$\operatorname{proj}_{K}(x) = \arg\min_{p \in K} \|x - p\|$$

Definition: The medial axis of $K \subseteq \mathbb{R}^d$ is $\mathcal{M}(K) := \{x \in \mathbb{R}^d; \ \# \operatorname{proj}_K(x) > 1\}$

$$\operatorname{proj}_{K}(x) = \arg\min_{p \in K} \|x - p\|$$

Definition: reach $(K) \ge R$ iff K^R does not intersect $\mathcal{M}(K)$.

Definition: The medial axis of $K \subseteq \mathbb{R}^d$ is $\mathcal{M}(K) := \{x \in \mathbb{R}^d; \ \# \operatorname{proj}_K(x) > 1\}$

$$\operatorname{proj}_{K}(x) = \arg\min_{p \in K} \|x - p\|$$

Definition: reach $(K) \ge R$ iff K^R does not intersect $\mathcal{M}(K)$.

(i) Motzkin's theorem: reach $(K) = +\infty$ iff K is convex ;

Definition: The medial axis of $K \subseteq \mathbb{R}^d$ is $\mathcal{M}(K) := \{x \in \mathbb{R}^d; \ \# \operatorname{proj}_K(x) > 1\}$

$$\operatorname{proj}_{K}(x) = \arg\min_{p \in K} \|x - p\|$$

Definition: reach $(K) \ge R$ iff K^R does not intersect $\mathcal{M}(K)$.

(i) Motzkin's theorem: reach $(K) = +\infty$ iff K is convex ;

(ii) If M is smooth, min. curvature radius of $M \ge \operatorname{reach}(M) > 0$.

Definition: The medial axis of $K \subseteq \mathbb{R}^d$ is $\mathcal{M}(K) := \{x \in \mathbb{R}^d; \ \# \operatorname{proj}_K(x) > 1\}$

$$\operatorname{proj}_{K}(x) = \arg\min_{p \in K} \|x - p\|$$

Definition: reach $(K) \ge R$ iff K^R does not intersect $\mathcal{M}(K)$.

Projection function $p_K : \mathbb{R}^d \setminus \mathcal{M}(K) \to K$.

Definition: The medial axis of $K \subseteq \mathbb{R}^d$ is $\mathcal{M}(K) := \{x \in \mathbb{R}^d; \ \# \operatorname{proj}_K(x) > 1\}$

$$\operatorname{proj}_{K}(x) = \arg\min_{p \in K} \|x - p\|$$

Definition: reach $(K) \ge R$ iff K^R does not intersect $\mathcal{M}(K)$.

Projection function $p_K : \mathbb{R}^d \setminus \mathcal{M}(K) \to K$.

Federer's tube formula: Suppose $R := \operatorname{reach}(K) > 0$. For all subset B of K, the map $r \mapsto \mathcal{H}^{d}(K^{r} \cap p_{K}^{-1}(B))$ is a polynomial of degree d on $[0, \operatorname{reach}(K)]$.

Definition: The boundary measure of Kwrt a domain E is defined for $B \subseteq K$ by $\mu_{K,E}(B) := \mathcal{H}^{d}(E \cap p_{K}^{-1}(B))$

Definition: The boundary measure of Kwrt a domain E is defined for $B \subseteq K$ by $\mu_{K,E} := p_{K\#} \mathcal{H}^d |_E$

Definition: The boundary measure of Kwrt a domain E is defined for $B \subseteq K$ by $\mu_{K,E} := p_{K\#} \mathcal{H}^d |_E$

Federer's tube formula: if reach(K) > R, \exists signed meas. $(\Phi_i(K))_{0 \le i \le d}$ st $\forall r \in [0, R], \quad \mu_{K,K^r} = \sum_{i=0}^d \Phi_K^{d-i} r^i$

Definition: The boundary measure of Kwrt a domain E is defined for $B \subseteq K$ by $\mu_{K,E} := p_{K\#} \mathcal{H}^d |_E$

Federer's tube formula: if reach(K) > R, \exists signed meas. $(\Phi_i(K))_{0 \le i \le d}$ st $\forall r \in [0, R], \quad \mu_{K,K^r} = \sum_{i=0}^d \Phi_K^{d-i} r^i$

Example:

Definition: The boundary measure of Kwrt a domain E is defined for $B \subseteq K$ by $\mu_{K,E} := p_{K\#} \mathcal{H}^d |_E$

Federer's tube formula: if reach(K) > R, \exists signed meas. $(\Phi_i(K))_{0 \le i \le d}$ st $\forall r \in [0, R], \quad \mu_{K,K^r} = \sum_{i=0}^d \Phi_K^{d-i} r^i$

Example:

Question: What is the dependence of $\mu_{K,E}$ on K? For what distance?

Definition: The boundary measure of Kwrt a domain E is defined for $B \subseteq K$ by $\mu_{K,E} := p_{K\#} \mathcal{H}^d |_E$

Federer's tube formula: if reach(K) > R, \exists signed meas. $(\Phi_i(K))_{0 \le i \le d}$ st $\forall r \in [0, R], \quad \mu_{K,K^r} = \sum_{i=0}^d \Phi_K^{d-i} r^i$

Question: What is the dependence of $\mu_{K,E}$ on K? For what distance?

 $BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$

 $BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$

Bounded-Lipschitz distance: For $\mu, \nu =$ measures with finite mass, $d_{bL}(\mu, \nu) := \sup_{\chi \in BL_1} |\int \chi d \mu - \int \chi d \nu|$

$$BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$$

Bounded-Lipschitz distance: For $\mu, \nu =$ measures with finite mass, $d_{bL}(\mu, \nu) := \sup_{\chi \in BL_1} |\int \chi d \mu - \int \chi d \nu|$

• If $X \subseteq B(0,r)$ with $r \ge 1$, and μ, ν are probability measures on X,

$$W_1(\mu,\nu)/r \le d_{bL}(\mu,\nu) \le W_1(\mu,\nu)$$

where W_1 is the Wasserstein distance.

$$BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$$

Bounded-Lipschitz distance: For $\mu, \nu =$ measures with finite mass, $d_{bL}(\mu, \nu) := \sup_{\chi \in BL_1} |\int \chi d \mu - \int \chi d \nu|$

• If $X \subseteq B(0,r)$ with $r \ge 1$, and μ, ν are probability measures on X,

$$W_1(\mu,\nu)/r \le d_{bL}(\mu,\nu) \le W_1(\mu,\nu)$$

where W_1 is the Wasserstein distance.

• Lemma: $d_{bL}(\mu_{K,E},\mu_{L,E}) \leq ||p_K - p_L||_{L^1(E)}$.

$$BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$$

Bounded-Lipschitz distance: For $\mu, \nu =$ measures with finite mass, $d_{bL}(\mu, \nu) := \sup_{\chi \in BL_1} |\int \chi d \mu - \int \chi d \nu|$

• If $X \subseteq B(0,r)$ with $r \ge 1$, and μ, ν are probability measures on X,

$$W_1(\mu,\nu)/r \le d_{\rm bL}(\mu,\nu) \le W_1(\mu,\nu)$$

where W_1 is the Wasserstein distance.

Lemma: $d_{bL}(\mu_{K,E},\mu_{L,E}) \le ||p_K - p_L||_{L^1(E)}$.

 $\sup_{\chi \in \mathrm{BL}_1} \left| \int_K \chi(p) \,\mathrm{d}\,\mu_{K,E}(p) - \int_K \chi(p) \,\mathrm{d}\,\mu_{L,E}(p) \right|$

$$BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$$

Bounded-Lipschitz distance: For $\mu, \nu =$ measures with finite mass, $d_{bL}(\mu, \nu) := \sup_{\chi \in BL_1} |\int \chi d \mu - \int \chi d \nu|$

▶ If $X \subseteq B(0,r)$ with $r \ge 1$, and μ, ν are probability measures on X,

$$W_1(\mu,\nu)/r \le d_{bL}(\mu,\nu) \le W_1(\mu,\nu)$$

where W_1 is the Wasserstein distance.

Lemma: $d_{bL}(\mu_{K,E}, \mu_{L,E}) \le ||p_K - p_L||_{L^1(E)}$.

change of variable formula

$$\sup_{\chi \in \mathrm{BL}_1} \left| \int_K \chi(p) \,\mathrm{d}\,\mu_{K,E}(p) - \int_K \chi(p) \,\mathrm{d}\,\mu_{L,E}(p) \right|$$

 $= \sup_{\chi \in \mathrm{BL}_1} \left| \int_E \chi(\mathbf{p}_K(x)) - \chi(\mathbf{p}_L(x)) \,\mathrm{d}\,\mathcal{H}^d(x) \right|$

$$BL_1 := \{ \chi : \mathbb{R}^d \to \mathbb{R}; \ 1\text{-Lipschitz}, \|\chi\|_{\infty} \le 1 \}$$

Bounded-Lipschitz distance: For $\mu, \nu =$ measures with finite mass, $d_{bL}(\mu, \nu) := \sup_{\chi \in BL_1} |\int \chi d \mu - \int \chi d \nu|$

• If $X \subseteq B(0,r)$ with $r \ge 1$, and μ, ν are probability measures on X,

$$W_1(\mu,\nu)/r \le d_{\rm bL}(\mu,\nu) \le W_1(\mu,\nu)$$

where W_1 is the Wasserstein distance.

Lemma:
$$d_{bL}(\mu_{K,E},\mu_{L,E}) \leq ||p_K - p_L||_{L^1(E)}$$
.

$$\sup_{\chi \in \mathrm{BL}_1} \left| \int_K \chi(p) \,\mathrm{d}\,\mu_{K,E}(p) - \int_K \chi(p) \,\mathrm{d}\,\mu_{L,E}(p) \right|$$

$$= \sup_{\chi \in \mathrm{BL}_{1}} | \int_{E} \chi(\mathbf{p}_{K}(x)) - \chi(\mathbf{p}_{L}(x)) \, \mathrm{d} \, \mathcal{H}^{d}(x)$$
$$\leq \|\mathbf{p}_{K} - \mathbf{p}_{L}\|_{\mathrm{L}^{1}(E)} \qquad \chi \text{ is } 1\text{-Lipschitz}$$

Proposition: Let K_n, K be compact subsets of \mathbb{R}^d s.t. $K_n \xrightarrow{d_H} K$ and $R := \min(\operatorname{reach}(K), \operatorname{reach}(K_n)) > 0$ Then, for any r < R, and $E \subseteq K^r$, $\lim_{n \to \infty} \|p_K - p_{K_n}\|_{L^{\infty}(E)} = 0$ in particular: $\lim_{n \to \infty} d_{\mathrm{bL}}(\mu_{K_n,E}, \mu_{K,E}) = 0$

[Federer 1959]

Proposition: Let K_n, K be compact subsets of \mathbb{R}^d s.t. $K_n \xrightarrow{d_H} K$ and $R := \min(\operatorname{reach}(K), \operatorname{reach}(K_n)) > 0$ Then, for any r < R, and $E \subseteq K^r$, $\lim_{n \to \infty} \|p_K - p_{K_n}\|_{L^{\infty}(E)} = 0$ in particular: $\lim_{n \to \infty} d_{\mathrm{bL}}(\mu_{K_n,E}, \mu_{K,E}) = 0$

[Federer 1959]

 \blacktriangleright Does not apply to a sequence of finite sets K_n converging to K.

Proposition: Let K_n, K be compact subsets of \mathbb{R}^d s.t. $K_n \xrightarrow{d_H} K$ and $R := \min(\operatorname{reach}(K), \operatorname{reach}(K_n)) > 0$ Then, for any r < R, and $E \subseteq K^r$, $\lim_{n \to \infty} \|p_K - p_{K_n}\|_{L^{\infty}(E)} = 0$ in particular: $\lim_{n \to \infty} d_{\mathrm{bL}}(\mu_{K_n,E}, \mu_{K,E}) = 0$

[Federer 1959]

- \blacktriangleright Does not apply to a sequence of finite sets K_n converging to K.
- Controlling $||\mathbf{p}_K \mathbf{p}_L||_{\mathbf{L}^{\infty}(E)}$ requires a lower bound on the reach.

Proposition: Let K_n, K be compact subsets of \mathbb{R}^d s.t. $K_n \xrightarrow{d_H} K$ and $R := \min(\operatorname{reach}(K), \operatorname{reach}(K_n)) > 0$ Then, for any r < R, and $E \subseteq K^r$, $\lim_{n \to \infty} \|p_K - p_{K_n}\|_{L^{\infty}(E)} = 0$ in particular: $\lim_{n \to \infty} d_{\mathrm{bL}}(\mu_{K_n,E}, \mu_{K,E}) = 0$

[Federer 1959]

- ▶ Does not apply to a sequence of finite sets K_n converging to K.
- Controlling $\|p_K p_L\|_{L^{\infty}(E)}$ requires a lower bound on the reach.
- ► Based on Arzela-Ascoli's theorem \implies not quantitative.
Nonquantitative stability of curvature measures

Proposition: Let K_n, K be compact subsets of \mathbb{R}^d s.t. $K_n \xrightarrow{d_H} K$ and $R := \min(\operatorname{reach}(K), \operatorname{reach}(K_n)) > 0$ Then, for any r < R, and $E \subseteq K^r$, $\lim_{n \to \infty} \|p_K - p_{K_n}\|_{L^{\infty}(E)} = 0$ in particular: $\lim_{n \to \infty} d_{bL}(\mu_{K_n,E}, \mu_{K,E}) = 0$

[Federer 1959]

Corollary: For all
$$1 \le i \le d$$
, $\lim_{n\to\infty} d_{bL}(\Phi^i_{K_n}, \Phi^i_K) = 0$.

- **b** Does not apply to a sequence of finite sets K_n converging to K.
- Controlling $\|p_K p_L\|_{L^{\infty}(E)}$ requires a lower bound on the reach.
- ▶ Based on Arzela-Ascoli's theorem \implies not quantitative.

Nonquantitative stability of curvature measures

Proposition: Let K_n, K be compact subsets of \mathbb{R}^d s.t. $K_n \xrightarrow{d_H} K$ and $R := \min(\operatorname{reach}(K), \operatorname{reach}(K_n)) > 0$ Then, for any r < R, and $E \subseteq K^r$, $\lim_{n \to \infty} \|p_K - p_{K_n}\|_{L^{\infty}(E)} = 0$ in particular: $\lim_{n \to \infty} d_{bL}(\mu_{K_n,E}, \mu_{K,E}) = 0$

[Federer 1959]

Corollary: For all
$$1 \le i \le d$$
, $\lim_{n\to\infty} d_{bL}(\Phi^i_{K_n}, \Phi^i_K) = 0$.

- \blacktriangleright Does not apply to a sequence of finite sets K_n converging to K.
- Controlling $\|p_K p_L\|_{L^{\infty}(E)}$ requires a lower bound on the reach.
- ▶ Based on Arzela-Ascoli's theorem \implies not quantitative.

Goal: Show $||p_K - p_L||_{L^1(E)} = O(d_H(K, L)^{\alpha})$ for arbitrary compact sets

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain

 $d_{bL}(\mu_{K,E},\mu_{L,E}) \le c_{K,E}\sqrt{d_{H}(K,L)}$

assuming that $d_H(K, L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E}\sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

 $c_{K,E} = 4(\mathcal{H}^d(E)\mathcal{H}^{d-1}(\partial E)\operatorname{diam}(K))^{1/2}$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E}\sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$

assuming that $d_{\mathrm{H}}(K, L) \leq \operatorname{diam}(K)$.

[Chazal, Cohen-Steiner, M. 2007]

 $c_{K,E} = 4(\mathcal{H}^d(E)\mathcal{H}^{d-1}(\partial E)\operatorname{diam}(K))^{1/2}$

Corollary: Given compact sets K and L in \mathbb{R}^d , and R > 0, $d_{bL}(\mu_{K,K^R}, \mu_{L,L^R}) \leq c_{K,R} \sqrt{d_H(K,L)}$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E}\sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$

assuming that $d_{\mathrm{H}}(K, L) \leq \operatorname{diam}(K)$.

[Chazal, Cohen-Steiner, M. 2007]

 $c_{K,E} = 4(\mathcal{H}^d(E)\mathcal{H}^{d-1}(\partial E)\operatorname{diam}(K))^{1/2}$

Corollary: Given compact sets K and L in \mathbb{R}^d , and R > 0, $d_{bL}(\mu_{K,K^R}, \mu_{L,L^R}) \leq c_{K,R} \sqrt{d_H(K,L)}$

Corollary: Assume reach $(K) \ge R$, and L is **any** compact set. Then, $\forall i \in \{1, \ldots, d\}, d_{bL}(\tilde{\Phi}_L^i, \Phi_K^i) \le c_{K,R} \sqrt{d_H(K, L)}.$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E} \sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$

assuming that $d_{\mathrm{H}}(K, L) \leq \operatorname{diam}(K)$.

[Chazal, Cohen-Steiner, M. 2007]

 $c_{K,E} = 4(\mathcal{H}^d(E)\mathcal{H}^{d-1}(\partial E)\operatorname{diam}(K))^{1/2}$

Corollary: Given compact sets K and L in \mathbb{R}^d , and R > 0, $d_{bL}(\mu_{K,K^R}, \mu_{L,L^R}) \leq c_{K,R} \sqrt{d_H(K,L)}$

Corollary: Assume reach $(K) \ge R$, and L is **any** compact set. Then, $\forall i \in \{1, \ldots, d\}, d_{bL}(\tilde{\Phi}_L^i, \Phi_K^i) \le c_{K,R} \sqrt{d_H(K, L)}.$

defined through polynomial fitting, i.e.

 $\mu_{L,L^{r_{\ell}}} = \sum_{i=0}^{d} \tilde{\Phi}_{L}^{d-i} r_{\ell}^{i}$ for fixed $0 < r_{0} < \ldots < r_{d} < R$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E} \sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

Optimality of exponent:

 $K = \text{unit disk} \subseteq \mathbb{R}^2$ E = B(0, 1 + R)

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E} \sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

Optimality of exponent:

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E} \sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

Optimality of exponent:

$$\begin{split} K &= \text{unit disk} \subseteq \mathbb{R}^2 \\ E &= B(0, 1+R) \end{split}$$

 $L_{\ell} = \text{reg. polygon in } K$ $d_{\mathrm{H}}(K, L_{\ell}) = \mathrm{O}(\ell^2)$ A constant fraction of *E* is projected to the vertices of P_{ℓ} .

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E} \sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

Optimality of exponent:

 $K = \text{unit disk} \subseteq \mathbb{R}^2$ E = B(0, 1 + R)

 $L_{\ell} = \text{reg. polygon in } K$ $d_{\mathrm{H}}(K, L_{\ell}) = \mathrm{O}(\ell^2)$ A constant fraction of *E* is projected to the vertices of P_{ℓ} .

 $d_{\mathrm{bL}}(\mu_{K,E},\mu_{L_{\ell},E}) = \Omega(\ell)$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact sets and E a bounded domain $d_{bL}(\mu_{K,E}, \mu_{L,E}) \leq c_{K,E} \sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[Chazal, Cohen-Steiner, M. 2007]

Optimality of exponent:

$$\begin{split} K &= \text{unit disk} \subseteq \mathbb{R}^2 \\ E &= B(0, 1+R) \end{split}$$

 $L_{\ell} = \text{reg. polygon in } K$ $d_{\mathrm{H}}(K, L_{\ell}) = \mathrm{O}(\ell^2)$ A constant fraction of E is projected to the vertices of P_{ℓ} .

$$d_{bL}(\mu_{K,E},\mu_{L_{\ell},E}) = \Omega(\ell)$$
$$= \Omega(\sqrt{d_{H}(K,L_{\ell})})$$

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E},\mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E}, \mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E},\mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex indeed, $v_K(x) = \frac{1}{2}||x||^2 - \min_{p \in K} \frac{1}{2}||x - p||^2$ $= \max_{p \in K} \frac{1}{2}||x||^2 - \frac{1}{2}||x - p||^2$ $= \max_{p \in K} \langle x|p \rangle - \frac{1}{2}||p||^2$

moreover, v_K is convex

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E},\mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex indeed, $v_K(x) = \frac{1}{2}||x||^2 - \min_{p \in K} \frac{1}{2}||x - p||^2$ $= \max_{p \in K} \frac{1}{2}||x||^2 - \frac{1}{2}||x - p||^2$ $= \max_{p \in K} \langle x|p \rangle - \frac{1}{2}||p||^2$

moreover, v_K is convex

 \longrightarrow 1-semiconcavity of the distance function to a compact set.

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E},\mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E},\mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex

Proposition: If $u, v \in C^2(E)$ are convex, and ∂E smooth, $\|\nabla u - \nabla v\|_{L^2(E)} \leq 2\|u - v\|_{L^{\infty}(E)}(\|\nabla u\|_{L^{\infty}(E)} + \|\nabla v\|_{L^{\infty}(E)})\mathcal{H}^{d-1}(\partial E)$

Step 3: With $u = v_K$, $v = v_L$, $\|\nabla v_K\|_{L^{\infty}(E)} + \|\nabla v_K\|_{L^{\infty}(E)} = c_K$

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E}, \mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex

Proposition: If $u, v \in C^2(E)$ are convex, and ∂E smooth, $\|\nabla u - \nabla v\|_{L^2(E)} \leq 2\|u - v\|_{L^{\infty}(E)}(\|\nabla u\|_{L^{\infty}(E)} + \|\nabla v\|_{L^{\infty}(E)})\mathcal{H}^{d-1}(\partial E)$

Step 3: With $u = v_K$, $v = v_L$, $\|\nabla v_K\|_{L^{\infty}(E)} + \|\nabla v_K\|_{L^{\infty}(E)} = c_K$ $\|\mathbf{p}_K - \mathbf{p}_L\|_{L^{2}(E)}^{2} = \|\nabla v_K - \nabla v_L\|_{L^{2}(E)}^{2} \le c_{E,K}\|v_K - v_L\|_{L^{\infty}(E)}$

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E}, \mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex

Proposition: If $u, v \in C^2(E)$ are convex, and ∂E smooth, $\|\nabla u - \nabla v\|_{L^2(E)} \leq 2\|u - v\|_{L^{\infty}(E)}(\|\nabla u\|_{L^{\infty}(E)} + \|\nabla v\|_{L^{\infty}(E)})\mathcal{H}^{d-1}(\partial E)$

Step 3: With $u = v_K$, $v = v_L$, $\|\nabla v_K\|_{L^{\infty}(E)} + \|\nabla v_K\|_{L^{\infty}(E)} = c_K$ $\|p_K - p_L\|_{L^2(E)}^2 = \|\nabla v_K - \nabla v_L\|_{L^2(E)}^2 \le c_{E,K} \|v_K - v_L\|_{L^{\infty}(E)}$ $= \frac{1}{2} \|d_K^2 - d_L^2\|_{L^{\infty}(E)} \le \frac{1}{2} \|d_K - d_L\|_{L^{\infty}(E)} \cdot \|d_K + d_L\|_{L^{\infty}(E)}$

Theorem: If $d_{\rm H}(K,L) \leq {\rm diam}(K)$, $d_{\rm bL}(\mu_{K,E},\mu_{L,E}) \leq c_{E,K} d_{\rm H}^{1/2}(K,L)$

Step 1: $d_{bL}(\mu_{K,E}, \mu_{L,E}) \le ||p_K - p_L||_{L^1(E)} \le c_{K,E} ||p_K - p_L||_{L^2(E)}$

Step 2: $p_K = \nabla v_K$ a.e. where $v_K(x) = \frac{1}{2}(||x||^2 - d_K(x)^2)$ is convex

Proposition: If $u, v \in C^2(E)$ are convex, and ∂E smooth, $\|\nabla u - \nabla v\|_{L^2(E)} \leq 2\|u - v\|_{L^{\infty}(E)}(\|\nabla u\|_{L^{\infty}(E)} + \|\nabla v\|_{L^{\infty}(E)})\mathcal{H}^{d-1}(\partial E)$

Step 3: With $u = v_K$, $v = v_L$, $\|\nabla v_K\|_{L^{\infty}(E)} + \|\nabla v_K\|_{L^{\infty}(E)} = c_K$ $\|p_K - p_L\|_{L^{2}(E)}^{2} = \|\nabla v_K - \nabla v_L\|_{L^{2}(E)}^{2} \le c_{E,K} \|v_K - v_L\|_{L^{\infty}(E)}$ $= \frac{1}{2} \|d_K^2 - d_L^2\|_{L^{\infty}(E)} \le \frac{1}{2} \|d_K - d_L\|_{L^{\infty}(E)} \cdot \|d_K + d_L\|_{L^{\infty}(E)} \le c_K d_H(K, L)$

$$\int_{E} \|\nabla u - \nabla v\|^{2} = \int_{\partial E} (u - v) \langle \nabla u - \nabla v | \mathbf{n}_{E} \rangle - \int_{E} (u - v) \Delta (u - v)$$

$$\leq \|u - v\|_{\mathbf{L}^{\infty}(E)} (\|\nabla u\|_{\mathbf{L}^{\infty}(E)} + \|\nabla v\|_{\mathbf{L}^{\infty}(E)}) \mathcal{H}^{d-1}(\partial E)$$

$$\le \|u - v\|_{\mathcal{L}^{\infty}(E)} \int_{E} (|\Delta u| + |\Delta v|)$$

Proposition: If $u, v \in C^2(E)$ are convex, and ∂E smooth, $\|\nabla u - \nabla v\|_{L^2(E)} \leq 2\|u - v\|_{L^{\infty}(E)}(\|\nabla u\|_{L^{\infty}(E)} + \|\nabla v\|_{L^{\infty}(E)})\mathcal{H}^{d-1}(\partial E)$

$$\int_{E} \|\nabla u - \nabla v\|^{2} = \int_{\partial E} (u - v) \langle \nabla u - \nabla v | \mathbf{n}_{E} \rangle - \int_{E} (u - v) \Delta (u - v)$$

$$\leq \|u - v\|_{\mathcal{L}^{\infty}(E)} (\|\nabla u\|_{\mathcal{L}^{\infty}(E)} + \|\nabla v\|_{\mathcal{L}^{\infty}(E)}) \mathcal{H}^{d-1}(\partial E)$$

$$\bullet \leq \|u - v\|_{\mathcal{L}^{\infty}(E)} \int_{E} (|\Delta u| + |\Delta v|)$$

finally: $\int_E |\Delta u| = \int_E \Delta u$ convexity

$$\begin{aligned} & \int_{E} \|\nabla u - \nabla v\|^{2} \stackrel{\checkmark}{=} \int_{\partial E} (u - v) \langle \nabla u - \nabla v | \mathbf{n}_{E} \rangle - \int_{E} (u - v) \Delta (u - v) \\ & \searrow \\ & \leq \|u - v\|_{\mathbf{L}^{\infty}(E)} (\|\nabla u\|_{\mathbf{L}^{\infty}(E)} + \|\nabla v\|_{\mathbf{L}^{\infty}(E)}) \mathcal{H}^{d-1}(\partial E) \end{aligned}$$

$$\bullet \leq \|u - v\|_{\mathcal{L}^{\infty}(E)} \int_{E} (|\Delta u| + |\Delta v|)$$

finally:
$$\int_{E} |\Delta u| = \int_{E} \Delta u = \int_{\partial E} \langle \nabla u | \mathbf{n}_{E} \rangle$$
$$\stackrel{\bullet}{\models} \qquad \stackrel{\bullet}{\models} \qquad \stackrel{\bullet}{\rightarrow} \qquad \stackrel$$

$$\int_{E} \|\nabla u - \nabla v\|^{2} = \int_{\partial E} (u - v) \langle \nabla u - \nabla v | \mathbf{n}_{E} \rangle - \int_{E} (u - v) \Delta (u - v)$$

$$\leq \|u - v\|_{\mathcal{L}^{\infty}(E)} (\|\nabla u\|_{\mathcal{L}^{\infty}(E)} + \|\nabla v\|_{\mathcal{L}^{\infty}(E)}) \mathcal{H}^{d-1}(\partial E)$$

$$\bullet \leq \|u - v\|_{\mathcal{L}^{\infty}(E)} \int_{E} (|\Delta u| + |\Delta v|)$$

finally:
$$\int_{E} |\Delta u| = \int_{E} \Delta u = \int_{\partial E} \langle \nabla u | \mathbf{n}_{E} \rangle \leq \|\nabla u\|_{\mathbf{L}}^{\infty}(E) \mathcal{H}^{d-1}(\partial E)$$

convexity Stokes

Example of boundary measures

[Chazal-Cohen-Steiner-M. '07]

2. Voronoi covariance measure

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Voronoi cell: $\operatorname{Vor}_P(p) = \{x \in \mathbb{R}^d; \forall q \in P, \|x - p\| \le \|x - q\|\}$

 $P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$

Voronoi cell: $\operatorname{Vor}_P(p) = \{x \in \mathbb{R}^d; \forall q \in P, \|x - p\| \le \|x - q\|\}$

 $pole_C(p) := farthest point to p in Vor_C(p)$

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Voronoi cell: $\operatorname{Vor}_P(p) = \{x \in \mathbb{R}^d; \forall q \in P, \|x - p\| \le \|x - q\|\}$

 $pole_C(p) := farthest point to p in Vor_C(p)$

If C is a **noiseless** ε -sampling of a surface S, the angle between pole_C(p) - p and the normal of S at p is O(ε).

[Amenta, Bern 1999]

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Voronoi cell: $\operatorname{Vor}_P(p) = \{x \in \mathbb{R}^d; \forall q \in P, \|x - p\| \le \|x - q\|\}$

 $pole_C(p) := farthest point to p in Vor_C(p)$

If C is a **noiseless** ε -sampling of a surface S, the angle between pole_C(p) - p and the normal of S at p is O(ε).

[Amenta, Bern 1999]

$$P = \{p_1, \dots, p_N\} \subseteq \mathbb{R}^d$$

Voronoi cell: $\operatorname{Vor}_P(p) = \{x \in \mathbb{R}^d; \forall q \in P, \|x - p\| \le \|x - q\|\}$

 $pole_C(p) := farthest point to p in Vor_C(p)$

If C is a **noiseless** ε -sampling of a surface S, the angle between $\operatorname{pole}_C(p) - p$ and the normal of S at p is $O(\varepsilon)$.

[Amenta, Bern 1999] [Dey, Sun 2005]

Need of an **integral** quantity to get stability under Hausdorff noise.
Covariance matrix:
$$\operatorname{cov}_p(\Omega) := \int_{\Omega} (x-p) \otimes (x-p) \, \mathrm{d} x.$$

 $[v \otimes v]_{ij} := v_i v_j$

Covariance matrix:
$$\operatorname{cov}_p(\Omega) := \int_{\Omega} (x - p) \otimes (x - p) \, \mathrm{d} x.$$
 [v

 $[v \otimes v]_{ij} := v_i v_j$

The eigenvectors of $cov_p(\Omega)$ are the **principal axes** of Ω (wrt p).

Covariance matrix:
$$\operatorname{cov}_p(\Omega) := \int_{\Omega} (x - p) \otimes (x - p) dx.$$
 $[v \otimes v]_{ij} := v_i v_j$

The eigenvectors of $cov_p(\Omega)$ are the **principal axes** of Ω (wrt p).

Algorithm:

• Consider the covariance matrix $\operatorname{cov}_{p_i}(\operatorname{Vor}_C(p_i) \cap E)$

Covariance matrix:
$$\operatorname{cov}_p(\Omega) := \int_{\Omega} (x - p) \otimes (x - p) dx.$$
 $[v \otimes v]_{ij} := v_i v_j$

The eigenvectors of $cov_p(\Omega)$ are the **principal axes** of Ω (wrt p).

Algorithm:

- Consider the covariance matrix $\operatorname{cov}_{p_i}(\operatorname{Vor}_C(p_i) \cap E)$
- The normal is estimated by the eigenvector corresponding to the largest eigenvalue (in red).

Covariance matrix:
$$\operatorname{cov}_p(\Omega) := \int_{\Omega} (x - p) \otimes (x - p) \, \mathrm{d} x.$$
 $[v \otimes v]_{ij} := v_i v_j$

The eigenvectors of $cov_p(\Omega)$ are the **principal axes** of Ω (wrt p).

Algorithm:

- Consider the covariance matrix $\operatorname{cov}_{p_i}(\operatorname{Vor}_C(p_i) \cap E)$
- The normal is estimated by the eigenvector corresponding to the largest eigenvalue (in red).
- Resilience to noise is achieved by taking union of neighbouring Voronoi cells.

[Alliez, Cohen-Steiner, Tong, Desbruns 2007]

The Voronoi covariance measure of K wrt a domain E is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

 $\mathcal{V}_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} (x - p_K(x)) \otimes (x - p_K(x)) \, \mathrm{d} \, \mathcal{H}^d(x)$

The Voronoi covariance measure of K wrt a domain E is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

 $\mathcal{V}_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} (x - p_K(x)) \otimes (x - p_K(x)) \, \mathrm{d} \, \mathcal{H}^d(x)$

NB: Boundary measure: $\mu_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} 1 \, \mathrm{d} \, \mathcal{H}^d(x)$

The Voronoi covariance measure of K wrt a domain E is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

 $\mathcal{V}_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} (x - p_K(x)) \otimes (x - p_K(x)) \, \mathrm{d} \, \mathcal{H}^d(x)$

▶ Discrete setting: $P = \{\bullet\} \subseteq \mathbb{R}^d$

The Voronoi covariance measure of K wrt a domain E is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

 $\mathcal{V}_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} (x - p_K(x)) \otimes (x - p_K(x)) \, \mathrm{d} \, \mathcal{H}^d(x)$

Discrete setting: $P = \{\bullet\} \subseteq \mathbb{R}^d$

 $p_P = closest point in P$

The Voronoi covariance measure of K wrt a domain E is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

 $\mathcal{V}_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} (x - p_K(x)) \otimes (x - p_K(x)) \, \mathrm{d} \, \mathcal{H}^d(x)$

• Discrete setting: $P = \{\bullet\} \subseteq \mathbb{R}^d$ $p_P = \text{closest point in } P$ $p_P^{-1}(B) = \bigcup_{p \in B \cap P} \operatorname{Vor}_P(p)$

The **Voronoi covariance measure** of K wrt a domain E is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

 $\mathcal{V}_{K,E}(B) = \int_{E \cap p_K^{-1}(B)} (x - p_K(x)) \otimes (x - p_K(x)) \, \mathrm{d} \, \mathcal{H}^d(x)$

• Discrete setting: $P = \{\bullet\} \subseteq \mathbb{R}^d$ $p_P = \text{closest point in } P$ $p_P^{-1}(B) = \bigcup_{p \in B \cap P} \operatorname{Vor}_P(p)$

$$\mathcal{V}_{P,E} = \sum_{p \in B \cap P} \operatorname{cov}_p(\operatorname{Vor}_P(p) \cap E)\delta_p$$

▶ $K \in \mathcal{K}(\mathbb{R}^d) \mapsto \mathcal{V}_{K,K^r}$ is a translation-invariant local tensor valuation

K ∈ K(ℝ^d) → V_{K,K^r} is a translation-invariant local tensor valuation
If reach(K) > R, ∃Vⁱ_K s.t. V_{K,K^r} = ∑^d_{i=1} Vⁱ_Kr^{d-i} on [0, R]

 K ∈ K(ℝ^d) → V_{K,K^r} is a translation-invariant local tensor valuation
If reach(K) > R, ∃Vⁱ_K s.t. V_{K,K^r} = ∑^d_{i=1} Vⁱ_K r^{d-i} on [0, R] local Minkowski tensor

 $K = \text{convex polyhedron in } \mathbb{R}^d$, d = 3 $E = K^R$.

 $K = \text{convex polyhedron in } \mathbb{R}^d$, d = 3 $E = K^R$.

$$Nor_K(p) := normal cone at p$$

 $K = \text{convex polyhedron in } \mathbb{R}^d$, d = 3 $E = K^R$.

$$Nor_K(p) := normal cone at p$$

▶ If p is a vertex of K, $\mathcal{V}_{K,K^R}(\{p\}) = R^{d+2} \operatorname{cov}_0(\operatorname{Nor}_K(p) \cap B(0,1))$

 $K = \text{convex polyhedron in } \mathbb{R}^d$, d = 3 $E = K^R$.

$$Nor_K(p) := normal cone at p$$

▶ If p is a vertex of K, $\mathcal{V}_{K,K^R}(\{p\}) = R^{d+2} \operatorname{cov}_0(\operatorname{Nor}_K(p) \cap B(0,1))$

► If q is on an edge with external angle α , spec $(\mathcal{V}_{K,R}(\mathcal{B}(q,r))) = \{\lambda_i\},\$

$$\lambda_1 = \frac{R^4 r}{4} (\sin(\alpha) + \alpha) ; \quad \lambda_2 = \frac{R^4 r}{4} (\alpha - \sin(\alpha)) ; \quad \lambda_3 = \frac{R^4 r}{4} \operatorname{O}(\frac{r}{R}) ;$$

 $K = \text{convex polyhedron in } \mathbb{R}^d$, d = 3 $E = K^R$.

$$Nor_K(p) := normal cone at p$$

► If p is a vertex of K, $\mathcal{V}_{K,K^R}(\{p\}) = R^{d+2} \operatorname{cov}_0(\operatorname{Nor}_K(p) \cap B(0,1))$

► If q is on an edge with external angle α , spec $(\mathcal{V}_{K,R}(\mathcal{B}(q,r))) = \{\lambda_i\},\$

$$\lambda_1 = \frac{R^4 r}{4} (\sin(\alpha) + \alpha) ; \quad \lambda_2 = \frac{R^4 r}{4} (\alpha - \sin(\alpha)) ; \quad \lambda_3 = \frac{R^4 r}{4} \operatorname{O}(\frac{r}{R}) ;$$

As $r \to 0$, e_3 converges to the tangent direction of the edge.

Stability of the Voronoi covariance measure

Bounded-Lipschitz distance for tensor-valued measures μ, ν $d_{bL}(\mu, \nu) := \sup_{f \in BL_1} \| \int f d \mu - \int f d \nu \|_{op}$ where for $A \in Sym^+(\mathbb{R}^d)$, $\|A\|_{op} = \sup_{v \in \mathbb{R}^d \setminus 0} \langle Av | v \rangle / \|v\|^2$

Stability of the Voronoi covariance measure

Bounded-Lipschitz distance for tensor-valued measures μ, ν $d_{bL}(\mu, \nu) := \sup_{f \in BL_1} \|\int f d\mu - \int f d\nu\|_{op}$ where for $A \in Sym^+(\mathbb{R}^d)$, $\|A\|_{op} = \sup_{v \in \mathbb{R}^d \setminus 0} \langle Av|v \rangle / \|v\|^2$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact and E a bounded domain $d_{bL}(\mathcal{V}_{K,E}, \mathcal{V}_{L,E}) \leq c_{E,K}\sqrt{d_H(K,L)}$ assuming that $d_H(K, L) \leq diam(K)$.

[M., Ovsjanikov, Guibas 2009]

Stability of the Voronoi covariance measure

Bounded-Lipschitz distance for tensor-valued measures μ, ν $d_{bL}(\mu, \nu) := \sup_{f \in BL_1} \|\int f d \mu - \int f d \nu\|_{op}$ where for $A \in Sym^+(\mathbb{R}^d)$, $\|A\|_{op} = \sup_{v \in \mathbb{R}^d \setminus 0} \langle Av|v \rangle / \|v\|^2$

Theorem: Let $K, L \subseteq \mathbb{R}^d$ be compact and E a bounded domain $d_{bL}(\mathcal{V}_{K,E}, \mathcal{V}_{L,E}) \leq c_{E,K}\sqrt{d_H(K,L)}$ assuming that $d_H(K,L) \leq diam(K)$.

[M., Ovsjanikov, Guibas 2009]

Corollary: Given compact sets K, L with $d_H(K, L) \leq diam(K)$, $d_{bL}(\mathcal{V}_{K,K^R}, \mathcal{V}_{L,L^R}) \leq c_{E,K,R} \sqrt{d_H(K,L)}$

 \rightarrow Inference result for local Minkowski tensors of sets with positive reach.

Numerical application of VCM: edge extraction

- $(\lambda_i(p))_{1 \le i \le 3} :=$ sorted eigenvalues of $\mathcal{V}_{P,P^R}(\mathbf{B}(p,r))$
- ▶ mark p as edge if $\lambda_2(p)/(\lambda_1(p) + \lambda_2(p) + \lambda_3(p)) \le T$

Uniform noise with $\varepsilon=2\%$ of diameter

Numerical application of VCM: edge extraction

- $(\lambda_i(p))_{1 \le i \le 3} :=$ sorted eigenvalues of $\mathcal{V}_{P,P^R}(\mathbf{B}(p,r))$
- ▶ mark p as edge if $\lambda_2(p)/(\lambda_1(p) + \lambda_2(p) + \lambda_3(p)) \le T$

Uniform noise with $\varepsilon=2\%$ of diameter

Numerical application of VCM: edge extraction

3. Distance to a measure and robust VCM

Offset-based inference fails even with a **single** outlier!

Offset-based inference fails even with a **single** outlier!

Definition: $\phi : \mathbb{R}^d \to \mathbb{R}$ is **distance-like** if $\phi \ge 0$, ϕ is proprer and $\phi^2 - \|.\|^2$ is concave.

Offset-based inference fails even with a **single** outlier!

Definition: $\phi : \mathbb{R}^d \to \mathbb{R}$ is **distance-like** if $\phi \ge 0$, ϕ is proprer and $\phi^2 - \|.\|^2$ is concave.

The stability theorems mentioned before can be generalized to:

 $P, d_P \longleftrightarrow \phi \text{ distance-like}$ $P^r \longleftrightarrow \phi^{-1}([0, r])$ $d_H(P, K) \le \varepsilon \longleftrightarrow ||d_K - \phi||_{\infty} \le \varepsilon$

Offset-based inference fails even with a **single** outlier!

Definition: $\phi : \mathbb{R}^d \to \mathbb{R}$ is **distance-like** if $\phi \ge 0$, ϕ is proprer and $\phi^2 - \|.\|^2$ is concave.

The stability theorems mentioned before can be generalized to:

 $P, \mathbf{d}_P \longleftrightarrow \phi \text{ distance-like}$ $P^r \longleftrightarrow \phi^{-1}([0, r])$ $\mathbf{d}_{\mathbf{H}}(P, K) \leq \varepsilon \longleftrightarrow \| \mathbf{d}_K - \phi \|_{\infty} \leq \varepsilon$

Idea: Replace d_P with a distance-like function more resilient to outliers.

The **Voronoi covariance measure** of a distance-like function ϕ is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$,

$$\mathcal{V}_{\phi,E}(B) = \int_E \mathbf{n}_{\phi}(x) \otimes \mathbf{n}_{\phi}(x) \mathbf{1}_B(x - \mathbf{n}_{\phi}(x)) \,\mathrm{d}\,\mathcal{H}^d(x)$$

where $\mathbf{n}_{\phi}(x) := \frac{1}{2} \nabla \phi^2(x)$.

The Voronoi covariance measure of a distance-like function ϕ is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$, $\mathcal{V}_{\phi,E}(B) = \int_E \mathbf{n}_{\phi}(x) \otimes \mathbf{n}_{\phi}(x) \mathbf{1}_B(x - \mathbf{n}_{\phi}(x)) \,\mathrm{d}\,\mathcal{H}^d(x)$ where $\mathbf{n}_{\phi}(x) := \frac{1}{2} \nabla \phi^2(x)$.

► Since $\phi^2 - \|.\|^2$ is concave, $\mathbf{n}_{\phi} = \frac{1}{2}\nabla\phi^2$ is well-defined a.e.

The Voronoi covariance measure of a distance-like function ϕ is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$, $\mathcal{V}_{\phi,E}(B) = \int_E \mathbf{n}_{\phi}(x) \otimes \mathbf{n}_{\phi}(x) \mathbf{1}_B(x - \mathbf{n}_{\phi}(x)) \,\mathrm{d}\,\mathcal{H}^d(x)$ where $\mathbf{n}_{\phi}(x) := \frac{1}{2} \nabla \phi^2(x)$.

Since $\phi^2 - \|.\|^2$ is concave, $\mathbf{n}_{\phi} = \frac{1}{2} \nabla \phi^2$ is well-defined a.e.

▶ Distance function: With $\phi = d_K$ one has: $\mathbf{n}_{\phi}(x) = x - p_K(x)$

i.e.
$$\mathcal{V}_{\mathrm{d}_K,E}(B) = \mathcal{V}_{K,E}(B)$$

The Voronoi covariance measure of a distance-like function ϕ is a tensor-valued measure on \mathbb{R}^d . For $B \subseteq \mathbb{R}^d$, $\mathcal{V}_{\phi,E}(B) = \int_E \mathbf{n}_{\phi}(x) \otimes \mathbf{n}_{\phi}(x) \mathbf{1}_B(x - \mathbf{n}_{\phi}(x)) \,\mathrm{d}\,\mathcal{H}^d(x)$ where $\mathbf{n}_{\phi}(x) := \frac{1}{2} \nabla \phi^2(x)$.

Since $\phi^2 - \|.\|^2$ is concave, $\mathbf{n}_{\phi} = \frac{1}{2} \nabla \phi^2$ is well-defined a.e.

▶ Distance function: With $\phi = d_K$ one has: $\mathbf{n}_{\phi}(x) = x - p_K(x)$

i.e.
$$\mathcal{V}_{\mathrm{d}_K,E}(B) = \mathcal{V}_{K,E}(B)$$

Theorem: Given a compact set K and ϕ distance-like, $d_{bL}(\mathcal{V}_{K,K^R}, \mathcal{V}_{\phi,\phi^{-1}([0,R])}) \leq c_{K,R} \| d_K - \phi \|_{\infty}^{1/2}$

[Cuel, Lachaud, M., Thibert 2014]

Wasserstein distance

Transport plan: non-negative measure π on $\mathbb{R}^d \times \mathbb{R}^d$ s.t. $\pi(A \times \mathbb{R}^d) = \mu(A)$ $\pi(\mathbb{R}^d \times B) = \nu(B)$

 μ,ν non-negative measures, $\mu(\mathbb{R}^d)=\nu(\mathbb{R}^d)$

Wasserstein distance

Transport plan: non-negative measure π on $\mathbb{R}^d \times \mathbb{R}^d$ s.t. $\pi(A \times \mathbb{R}^d) = \mu(A)$ $\pi(\mathbb{R}^d \times B) = \nu(B)$

 μ,ν non-negative measures, $\mu(\mathbb{R}^d)=\nu(\mathbb{R}^d)$

Wasserstein distance:

$$W_2(\mu,\nu) := (\min_{\pi} \int ||x-y||^2 \,\mathrm{d}\,\pi(x,y)))^{1/2}$$
Wasserstein distance

Transport plan: non-negative measure π on $\mathbb{R}^d \times \mathbb{R}^d$ s.t. $\pi(A \times \mathbb{R}^d) = \mu(A)$ $\pi(\mathbb{R}^d \times B) = \nu(B)$

 μ,ν non-negative measures, $\mu(\mathbb{R}^d)=\nu(\mathbb{R}^d)$

$$N_2(\mu,\nu) := (\min_{\pi} \int ||x-y||^2 d\pi(x,y)))^{1/2}$$

Example: point cloud P — measure $\mu_P := \frac{1}{d} \sum_{p \in P} \delta_p$

Wasserstein distance

Transport plan: non-negative measure π on $\mathbb{R}^d \times \mathbb{R}^d$ s.t. $\pi(A \times \mathbb{R}^d) = \mu(A)$ $\pi(\mathbb{R}^d \times B) = \nu(B)$

 μ,ν non-negative measures, $\mu(\mathbb{R}^d)=\nu(\mathbb{R}^d)$

Wasserstein distance: $W_2(\mu,\nu) := (\min_{\pi} \int ||x - y||^2 d \pi(x,y)))^{1/2}$

Example: point cloud P — measure $\mu_P := \frac{1}{d} \sum_{p \in P} \delta_p$

if
$$P = \bullet \cup \bullet$$
 and $Q = \bullet \cup \bullet$
then $d_H(P,Q) = R$ and $W_2(\mu_P,\mu_Q) \le \frac{k}{N}R$

In practice, $W_2(\mu_P, \mu_Q) \ll d_H(P, Q)$

Wasserstein distance

Transport plan: non-negative measure π on $\mathbb{R}^d \times \mathbb{R}^d$ s.t. $\pi(A \times \mathbb{R}^d) = \mu(A)$ $\pi(\mathbb{R}^d \times B) = \nu(B)$

 μ,ν non-negative measures, $\mu(\mathbb{R}^d)=\nu(\mathbb{R}^d)$

Wasserstein distance: $W_2(\mu,\nu) := (\min_{\pi} \int ||x - y||^2 d \pi(x,y)))^{1/2}$

Summary:

(compact sets, $d_{ m H}$)	(probability measures, W_2)
K, d_K	$\mu, \mathrm{d}_{\mu,m}$
d_K distance-like	$\mathrm{d}_{\mu,m}$ distance-like
$\ \mathrm{d}_K - \mathrm{d}_{K'} \ \le \mathrm{d}_\mathrm{H}(K, K')$	$\ d_{\mu,m} - d_{\mu',m} \ _{\infty} \le m^{-1/2} W_2(\mu,\mu')$

Submeasure: Given a probability measure μ and $m\in(0,1),$

 $\operatorname{Sub}_m(\mu) = \{\nu \le \mu; \operatorname{mass}(\nu) = m\}$

Submeasure: Given a probability measure μ and $m \in (0, 1)$,

$$\operatorname{Sub}_m(\mu) = \{\nu \le \mu; \operatorname{mass}(\nu) = m\}$$

 $- \Longleftrightarrow \nu(B) \le \mu(B)$ for all Borel set.

Submeasure: Given a probability measure μ and $m \in (0, 1)$, $\operatorname{Sub}_m(\mu) = \{ \nu \leq \mu; \max(\nu) = m \}$ $\iff \nu(B) \leq \mu(B)$ for all Borel set.

Distance to a measure: Given μ a probability measure on \mathbb{R}^d , $m \in (0, 1)$ $d_{\mu,m}(x) := \min_{\nu \in \operatorname{Sub}_m(\mu)} \left(\frac{1}{m} \int ||x - p||^2 \, \mathrm{d}\,\nu(p)\right)^{1/2}$

[Chazal-Cohen-Steiner-M '09]

Submeasure: Given a probability measure μ and $m \in (0, 1)$, $\operatorname{Sub}_m(\mu) = \{ \nu \leq \mu; \max(\nu) = m \}$ $\longleftrightarrow \nu(B) \leq \mu(B)$ for all Borel set.

Submeasure: Given a probability measure μ and $m \in (0, 1)$, $\operatorname{Sub}_m(\mu) = \{ \nu \leq \mu; \max(\nu) = m \}$ $\iff \nu(B) \leq \mu(B)$ for all Borel set.

Submeasure: Given a probability measure μ and $m \in (0, 1)$, $\operatorname{Sub}_m(\mu) = \{ \nu \leq \mu; \max(\nu) = m \}$ $\iff \nu(B) \leq \mu(B)$ for all Borel set.

Example: Let $\mu_P =$ uniform probability measure on P and m = k/|P|,

Submeasure: Given a probability measure μ and $m \in (0, 1)$, $\operatorname{Sub}_m(\mu) = \{ \nu \leq \mu; \max(\nu) = m \}$ $\iff \nu(B) \leq \mu(B)$ for all Borel set.

Example: Let $\mu_P =$ uniform probability measure on P and m = k/|P|,

$$d_{\mu_P,m}^2 = \frac{1}{k} \sum_{p \in NN_P^k(x)} ||x - p||^2$$

where $NN_P^k(x) = k$ nearest neighbors of x in P

Proposition: The function $d_{\mu,m}$ is distance-like.

Proposition: The function $d_{\mu,m}$ is distance-like.

Proposition: The function $d_{\mu,m}$ is distance-like.

(*)
$$d^2_{\mu,m}(x) = \min_{\nu \in \operatorname{Sub}_m(\mu)} m \int_{\mathbb{R}^d} ||x - p||^2 \, \mathrm{d}\, \nu(p)$$

Proposition: The function $d_{\mu,m}$ is distance-like.

(*)
$$d_{\mu,m}^2(x) = \min_{\nu \in Sub_m(\mu)} m \int_{\mathbb{R}^d} ||x - p||^2 d\nu(p)$$

= $\min_{\nu \in Sub_m(\mu)} m \int_{\mathbb{R}^d} (||x||^2 + ||p||^2 - 2\langle x|p\rangle) d\nu(p)$

Proposition: The function $d_{\mu,m}$ is distance-like.

(*)
$$d_{\mu,m}^{2}(x) = \min_{\nu \in \operatorname{Sub}_{m}(\mu)} m \int_{\mathbb{R}^{d}} ||x - p||^{2} d\nu(p)$$
$$= \min_{\nu \in \operatorname{Sub}_{m}(\mu)} m \int_{\mathbb{R}^{d}} (||x||^{2} + ||p||^{2} - 2\langle x|p\rangle) d\nu(p)$$
$$= ||x||^{2} + \min_{\nu \in \operatorname{Sub}_{m}(\mu)} m \int_{\mathbb{R}^{d}} (||p||^{2} - 2\langle x|p\rangle) d\nu(p)$$

Proposition: The function $d_{\mu,m}$ is distance-like.

Proof: We show that $d_{\mu,m}^2 - \|.\|^2$ is concave:

(*)
$$d_{\mu,m}^{2}(x) = \min_{\nu \in Sub_{m}(\mu)} m \int_{\mathbb{R}^{d}} ||x - p||^{2} d\nu(p)$$
$$= \min_{\nu \in Sub_{m}(\mu)} m \int_{\mathbb{R}^{d}} (||x||^{2} + ||p||^{2} - 2\langle x|p\rangle) d\nu(p)$$
$$= ||x||^{2} + \min_{\nu \in Sub_{m}(\mu)} m \int_{\mathbb{R}^{d}} (||p||^{2} - 2\langle x|p\rangle) d\nu(p)$$

 $\implies \quad \mathrm{d}_{\mu,m}(x)^2 - \|.\|^2 \text{ is concave, and with } \nu := \text{minimizer in (1),}$ $\frac{1}{2} \nabla \,\mathrm{d}_{\mu,m}^2(x) = x - m \int_{\mathbb{R}^d} p \,\mathrm{d}\,\nu(p)$ $= x - \text{centroid}(\nu)$

Proposition: The function $d_{\mu,m}$ is distance-like.

Illustration: P sampled from a mixture of two Gaussians in \mathbb{R}^2 . |P| = 500 and m = 20/500

 $d_{\mu,m}$

distance to the $20 \mathrm{th}$ nearest neighbor

Proposition: $\| d_{\mu,m} - d_{\mu',m} \|_{\infty} \le m^{-1/2} W_2(\mu, \mu')$

Proposition:
$$\| d_{\mu,m} - d_{\mu',m} \|_{\infty} \le m^{-1/2} W_2(\mu, \mu')$$

Definition: Assume μ_K is supported on K. Then, $\dim(\mu_K) \ge \ell$ iff $\exists \alpha_K, r_K > 0$ s.t. $\forall x \in K, \forall r \le r_K, \qquad \mu(B(x,r)) \ge \alpha_K r^\ell$

Example: Volume measure on a compact surface.

Proposition: $\| d_{\mu,m} - d_{\mu',m} \|_{\infty} \le m^{-1/2} W_2(\mu, \mu')$

Definition: Assume μ_K is supported on K. Then, $\dim(\mu_K) \ge \ell$ iff $\exists \alpha_K, r_K > 0$ s.t. $\forall x \in K, \forall r \le r_K, \qquad \mu(B(x,r)) \ge \alpha_K r^\ell$

Example: Volume measure on a compact surface.

Corollary: If μ_K has dimension at most ℓ , $\| \mathbf{d}_K - \mathbf{d}_{\mu_P,m} \|_{\infty} \le \| \mathbf{d}_K - \mathbf{d}_{\mu_K,m} \|_{\infty} + \| \mathbf{d}_{\mu_K,m} - \mathbf{d}_{\mu_P,m} \|_{\infty}$

Proposition: $\| d_{\mu,m} - d_{\mu',m} \|_{\infty} \le m^{-1/2} W_2(\mu, \mu')$

 $K := \operatorname{spt}(\mu)$

 $\begin{array}{l|l} \textbf{Definition: Assume } \mu_K \text{ is supported on } K. \\ \textbf{Then, } \dim(\mu_K) \geq \ell \text{ iff } \exists \alpha_K, r_K > 0 \text{ s.t.} \\ \forall x \in K, \forall r \leq r_K, \qquad \mu(\textbf{B}(x,r)) \geq \alpha_K r^\ell \end{array}$

Example: Volume measure on a compact surface.

Corollary: If μ_K has dimension at most ℓ , $\| \mathbf{d}_K - \mathbf{d}_{\mu_P,m} \|_{\infty} \leq \| \mathbf{d}_K - \mathbf{d}_{\mu_K,m} \|_{\infty} + \| \mathbf{d}_{\mu_K,m} - \mathbf{d}_{\mu_P,m} \|_{\infty}$ $\leq \alpha_K^{-1/\ell} m^{1/\ell} + m^{-1/2} \mathbf{W}_2(\mu_P,\mu_K)$

Proposition: $\| d_{\mu,m} - d_{\mu',m} \|_{\infty} \le m^{-1/2} W_2(\mu, \mu')$

 μ_{K}

• P

 $K := \operatorname{spt}(\mu)$

 $\begin{array}{l|l} \textbf{Definition: Assume } \mu_K \text{ is supported on } K.\\ \text{Then, } \dim(\mu_K) \geq \ell \text{ iff } \exists \alpha_K, r_K > 0 \text{ s.t.}\\ \forall x \in K, \forall r \leq r_K, \qquad \mu(\mathrm{B}(x,r)) \geq \alpha_K r^\ell \end{array}$

Example: Volume measure on a compact surface.

Corollary: If μ_K has dimension at most ℓ , $\| d_K - d_{\mu_P,m} \|_{\infty} \leq \| d_K - d_{\mu_K,m} \|_{\infty} + \| d_{\mu_K,m} - d_{\mu_P,m} \|_{\infty}$ $\leq \alpha_K^{-1/\ell} m^{1/\ell} + m^{-1/2} W_2(\mu_P, \mu_K)$ smoothing noise

Proposition: $\| d_{\mu,m} - d_{\mu',m} \|_{\infty} \le m^{-1/2} W_2(\mu, \mu')$

In this case, one can approximate \mathcal{V}_{K,K^R} by $\mathcal{V}_{\phi,\phi^{-1}([0,R])}$ with $\phi = d_{\mu_P,m}$.

Example: detection of sharp features

4. Computations

Computation of boundary measures

Boundary measures of a finite sets can be computed via **Monte-Carlo**:

Input: $P \subseteq \mathbb{R}^d$, r > 0, $N \in \mathbb{N}$ Output: $\mu_N \sim \mu := \frac{\mu_{P,P^r}}{\operatorname{vol}^d(P^r)}$

Computation of boundary measures

Boundary measures of a finite sets can be computed via **Monte-Carlo**:

Input: $P \subseteq \mathbb{R}^d$, r > 0, $N \in \mathbb{N}$ Output: $\mu_N \sim \mu := \frac{\mu_{P,P^r}}{\operatorname{vol}^d(P^r)}$

(1) Sample points $(X_i)_{1 \le i \le N}$ in P^r

(2) Compute the projection of each point (X_i) on P: $p_i \leftarrow p_P(X_i)$.

(3) Consider $\mu_N = \frac{1}{N} \sum_i \delta_{p_i}$

Computation of boundary measures

Boundary measures of a finite sets can be computed via **Monte-Carlo**:

Input: $P \subseteq \mathbb{R}^d$, r > 0, $N \in \mathbb{N}$ Output: $\mu_N \sim \mu := \frac{\mu_{P,P^r}}{\operatorname{vol}^d(P^r)}$

(1) Sample points $(X_i)_{1 \le i \le N}$ in P^r

(2) Compute the projection of each point (X_i) on P: $p_i \leftarrow p_P(X_i)$.

(3) Consider $\mu_N = \frac{1}{N} \sum_i \delta_{p_i}$

 $\mathbb{P}(\mathrm{d}_{\mathrm{bL}}(\mu_N,\mu) \ge \varepsilon) \le 2\exp(|P|\ln(16/\varepsilon) - N\varepsilon^2)$

Computation of boundary measures and VCMs

Boundary measures of a finite sets can be computed via **Monte-Carlo**:

Input: $P \subseteq \mathbb{R}^d$, r > 0, $N \in \mathbb{N}$ Output: $\mu_N \sim \mu := \frac{\mu_{P,P^r}}{\operatorname{vol}^d(P^r)}$

(1) Sample points $(X_i)_{1 \le i \le N}$ in P^r

(2) Compute the projection of each point (X_i) on P: $p_i \leftarrow p_P(X_i)$.

(3) Consider
$$\mu_N = \frac{1}{N} \sum_i \delta_{p_i}$$

 $\nu_N = \frac{1}{N} \sum_i (X_i - p_i) \otimes (X_i - p_i) \delta_{p_i}$

 $\mathbb{P}(\mathrm{d}_{\mathrm{bL}}(\mu_N,\mu) \ge \varepsilon) \le 2\exp(|P|\ln(16/\varepsilon) - N\varepsilon^2)$