Local Tensor Valuations

Daniel Hug

Karlsruhe Institute of Technology

(based on joint work with Rolf Schneider)

"Workshop on Tensor Valuations ..." Sandbjerg, September 2014

We consider maps

 $\Gamma: \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p \qquad \text{or} \qquad \Gamma: \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$

which are

We consider maps

 $\Gamma: \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p \qquad \text{or} \qquad \Gamma: \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$

which are

(a) measure valued: $\Gamma(K, \cdot)$ is a tensor measure.

We consider maps

 $\Gamma: \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p \qquad \text{or} \qquad \Gamma: \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$

which are

(a) measure valued: $\Gamma(K, \cdot)$ is a tensor measure.

- (b) isometry covariant:
 - $\Gamma(K + t, \eta + t)$ is a tensor polynomial in $t \in \mathbb{R}^n$,
 - $\Gamma(\vartheta K, \vartheta \eta) = \vartheta \Gamma(K, \eta)$ for $\vartheta \in O(n)$.

We consider maps

 $\Gamma: \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p \qquad \text{or} \qquad \Gamma: \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$

which are

(a) measure valued: $\Gamma(K, \cdot)$ is a tensor measure.

- (b) isometry covariant:
 - $\Gamma(K + t, \eta + t)$ is a tensor polynomial in $t \in \mathbb{R}^n$,
 - $\Gamma(\vartheta K, \vartheta \eta) = \vartheta \Gamma(K, \eta)$ for $\vartheta \in O(n)$.
- (c) locally defined: $\Gamma(K, \eta) = \Gamma(K', \eta)$ whenever $\eta \in \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1})$ and $\eta \cap \operatorname{Nor} K = \eta \cap \operatorname{Nor} K'$.

We consider maps

 $\Gamma: \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p \qquad \text{or} \qquad \Gamma: \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$

which are

(a) measure valued: $\Gamma(K, \cdot)$ is a tensor measure.

- (b) isometry covariant:
 - $\Gamma(K + t, \eta + t)$ is a tensor polynomial in $t \in \mathbb{R}^n$, • $\Gamma(\vartheta K, \vartheta \eta) = \vartheta \Gamma(K, \eta)$ for $\vartheta \in O(n)$.
- (c) locally defined: $\Gamma(K, \eta) = \Gamma(K', \eta)$ whenever $\eta \in \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1})$ and $\eta \cap \operatorname{Nor} K = \eta \cap \operatorname{Nor} K'$.
- (d) weakly continuous: if $\lim_{i\to\infty} K_i = K$ then

$$\lim_{i\to\infty}\int_{\mathbb{R}^n\times\mathbb{S}^{n-1}}f\,\mathrm{d}\Gamma(K_i,\cdot)=\int_{\mathbb{R}^n\times\mathbb{S}^{n-1}}f\,\mathrm{d}\Gamma(K,\cdot)$$

for all continuous functions $f : \mathbb{R}^n \times \mathbb{S}^{n-1} \to \mathbb{R}$.

Examples

1. For $K \in \mathcal{K}^n$ and $\eta \in \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1})$

$$\phi_k^{r,s}(K,\eta) := c_{n,k}^{r,s} \int_{\eta} x^r u^s \Lambda_k(K, \mathbf{d}(x, u))$$

for $r, s, k \in \mathbb{N}_0$ with $k \leq n - 1$.

Here $\Lambda_k(K, \cdot)$ is the *k*-th support measure and $x^r u^s$ is a symmetric tensor product.

Examples

1. For $K \in \mathcal{K}^n$ and $\eta \in \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1})$

$$\phi_k^{r,s}(K,\eta) := c_{n,k}^{r,s} \int_{\eta} x^r u^s \Lambda_k(K, \mathbf{d}(x, u))$$

for $r, s, k \in \mathbb{N}_0$ with $k \leq n - 1$.

Here $\Lambda_k(K, \cdot)$ is the *k*-th support measure and $x^r u^s$ is a symmetric tensor product.

2. For $P \in \mathcal{P}^n$

$$\phi_k^{r,s,j}(P,\eta) := C_{n,k}^{r,s} \sum_{F \in \mathcal{F}_k(P)} Q_{\mathcal{L}(F)}^j \int_F \int_{\nu(P,F)} \mathbf{1}_{\eta}(x,u) x^r u^s \mathcal{H}^{n-k-1}(\mathrm{d} u) \mathcal{H}^k(\mathrm{d} x)$$

for $r, s, j, k \in \mathbb{N}_0$ with $1 \le k \le n - 1$; $\phi_0^{r,s,0} := \phi_0^{r,s}$.

For $p \in \mathbb{N}_0$, let $T_p(\mathcal{P}^n)$ denote the real vector space of all mappings $\Gamma : \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$ with the following properties:

(a) $\Gamma(P, \cdot)$ is a \mathbb{T}^{p} -valued measure, for each $P \in \mathcal{P}^{n}$;

- (b) Γ is isometry covariant;
- (c) Γ is locally defined.

For $p \in \mathbb{N}_0$, let $T_p(\mathcal{P}^n)$ denote the real vector space of all mappings $\Gamma : \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$ with the following properties:

(a) Γ(P, ·) is a T^p-valued measure, for each P ∈ Pⁿ;
(b) Γ is isometry covariant;

(c) Γ is locally defined.

Theorem 1 A basis of $T_p(\mathcal{P}^n)$ is given by the mappings

$$Q^m \phi_k^{r,s,j},$$

where $m, r, s, j \in \mathbb{N}_0$ satisfy 2m + 2j + r + s = p and where $k \in \{0, ..., n-1\}$, but j = 0 if $k \in \{0, n-1\}$.

For $p \in \mathbb{N}_0$, let $T_p^{(0)}(\mathcal{P}^n)$ denote the real vector space of all mappings $\Gamma : \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$ with the following properties:

(a) $\Gamma(P, \cdot)$ is a \mathbb{T}^{p} -valued measure, for each $P \in \mathcal{P}^{n}$;

(b) Γ is translation invariant and rotation covariant;

(c) Γ is locally defined.

For $p \in \mathbb{N}_0$, let $T_p^{(0)}(\mathcal{P}^n)$ denote the real vector space of all mappings $\Gamma : \mathcal{P}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$ with the following properties:

(a) Γ(P, ·) is a T^p-valued measure, for each P ∈ Pⁿ;
(b) Γ is translation invariant and rotation covariant;
(c) Γ is locally defined.

Theorem 1 A **basis** of $T_{\rho}^{(0)}(\mathcal{P}^n)$ is given by the mappings

$$Q^m \phi_k^{\mathbf{0},s,j},$$

where $m, s, j \in \mathbb{N}_0$ satisfy 2m + 2j + s = p and where $k \in \{0, ..., n - 1\}$, but j = 0 if $k \in \{0, n - 1\}$.

General convex bodies

Why did we not define $\phi_k^{r,s,j}(K,\cdot)$ for $K \in \mathcal{K}^n$ and $j \ge 1$?

General convex bodies

Why did we not define $\phi_k^{r,s,j}(K, \cdot)$ for $K \in \mathcal{K}^n$ and $j \ge 1$? At least for k = n - 1 we can replace $Q_{L(F)}^j$ in

$$C_{n,n-1}^{r,s}\sum_{F\in\mathcal{F}_{n-1}(P)}Q_{L(F)}^{j}\int_{F}\int_{\nu(P,F)}\mathbf{1}_{\eta}(x,u)x^{r}u^{s}\mathcal{H}^{0}(\mathrm{d} u)\mathcal{H}^{n-1}(\mathrm{d} x)$$

by

$$Q_{L(F)}^{j} = \left(Q - u^{2}\right)^{j} = \sum_{i=0}^{j} (-1)^{i} {j \choose i} Q^{j-i} i^{2i}$$

so that

$$\phi_{n-1}^{r,s,j} = \sum_{i=0}^{j} (-1)^{i} {j \choose i} \frac{(s+2i)!\omega_{1+s+2i}}{s!\omega_{1+s}} Q^{j-i} \phi_{n-1}^{r,s+2i}.$$

Splitting wrt degree of homogeneity

$$\begin{split} & \Gamma: \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p \text{ is homogeneous of degree } k \text{ if} \\ & \Gamma(\lambda \mathcal{K}, \lambda \eta) = \lambda^k \Gamma(\mathcal{K}, \eta), \qquad \mathcal{K} \in \mathcal{K}^n, \eta \in \mathcal{B}(\Sigma^n), \lambda > 0, \\ & \text{where } \lambda \eta := \{ (\lambda x, u) : (x, u) \in \eta \}. \end{split}$$

Splitting wrt degree of homogeneity

 $\Gamma : \mathcal{K}^n \times \mathcal{B}(\mathbb{R}^n \times \mathbb{S}^{n-1}) \to \mathbb{T}^p$ is homogeneous of degree *k* if

 $\Gamma(\lambda K, \lambda \eta) = \lambda^{k} \Gamma(K, \eta), \qquad K \in \mathcal{K}^{n}, \eta \in \mathcal{B}(\Sigma^{n}), \lambda > 0,$

where $\lambda \eta := \{(\lambda x, u) : (x, u) \in \eta\}.$

Lemma Let $p \in \mathbb{N}_0$. Let $\Gamma : \mathcal{K}^n \times \mathcal{B}(\Sigma^n) \to \mathbb{T}^p$ be such that (a) $\Gamma(K, \cdot)$ is a \mathbb{T}^p -valued measure, for each $K \in \mathcal{K}^n$; (b) Γ is translation invariant and rotation covariant; (c) Γ is locally defined; (d) Γ is weakly continuous.

Then $\Gamma = \sum_{k=0}^{n-1} \Gamma_k$, where each Γ_k has properties (a) – (d) and is homogeneous of degree *k*.

Proof. The restriction $\Gamma | \mathcal{P}^n \times \mathcal{B}(\Sigma^n)$ has all the properties required to apply the characterization result for polytopes. Hence it is a linear combination of $Q^m \phi_k^{0,s,j}$ so that

$$\Gamma | \mathcal{P}^n imes \mathcal{B}(\Sigma^n) = \sum_{k=0}^{n-1} \Gamma_k$$

with $\Gamma_k : \mathcal{P}^n \times \mathcal{B}(\Sigma^n) \to \mathbb{T}^p$. This shows that

$$\Gamma(\lambda \boldsymbol{P},\lambda\eta) = \sum_{k=0}^{n-1} \lambda^k \Gamma_k(\boldsymbol{P},\eta), \qquad \boldsymbol{P} \in \mathcal{P}^n, \eta \in \mathcal{B}(\Sigma^n), \lambda > 0.$$

This relation can be inverted coordinate-wise, i.e.

$$\Gamma_k(\boldsymbol{P},\eta) = \sum_{r=1}^n b_{kr} \Gamma(r\boldsymbol{P},r\eta), \quad k = 0, \dots, n-1,$$

and used to define Γ_k for general convex bodies.

Weakly continuous extension for j = 1

The normal bundle of $K \in \mathcal{K}^n$ is the (n-1)-rectifiable set

Nor
$$\mathcal{K} := \{ (x, u) \in \partial \mathcal{K} \times \mathbb{S}^{n-1} : \langle x, u \rangle = h(\mathcal{K}, u) \}.$$

For \mathcal{H}^{n-1} almost all $(x, u) \in \text{Nor } K$, the tangent space $\text{Tan}^{n-1}(K, (x, u))$ is an (n-1)-dimensional linear subspace spanned by $a_1(x, u), \ldots, a_{n-1}(x, u)$, where

$$a_i(x,u):=\left(rac{1}{\sqrt{1+k_i(x,u)^2}}\,b_i(x,u),rac{k_i(x,u)}{\sqrt{1+k_i(x,u)^2}}\,b_i(x,u)
ight),$$

 $b_1(x, u), \dots, b_{n-1}(x, u)$ is a suitably oriented ONB of u^{\perp} , and $k_i(x, u) \in [0, \infty]$.

We define an (n-1)-vector

$$a_{\mathcal{K}}(x,u) := a_1(x,u) \wedge \ldots \wedge a_{n-1}(x,u),$$

which orients $\operatorname{Tan}^{n-1}(K, (x, u))$ and then an (n-1)-dimensional current in \mathbb{R}^{2n} by

$$T_{\mathcal{K}} := \left(\mathcal{H}^{n-1} \sqcup \operatorname{Nor} \mathcal{K} \right) \wedge a_{\mathcal{K}},$$

the normal cycle of K. More explicitly,

$$T_{K}(\varphi) = \int_{\operatorname{Nor} K} \langle a_{K}(x, u), \varphi(x, u) \rangle \, \mathcal{H}^{n-1}(d(x, u)),$$

for all $\mathcal{H}^{n-1} \sqcup$ Nor *K*-integrable functions $\varphi : \mathbb{R}^{2n} \to \bigwedge^{n-1} \mathbb{R}^{2n}$.

Lipschitz–Killing forms

Differential forms $\varphi_k : \mathbb{R}^{2n} \to \bigwedge^{n-1} \mathbb{R}^{2n}$, $k \in \{0, \dots, n-1\}$, of degree n-1 on \mathbb{R}^{2n} are defined by

$$\varphi_{k}(x, u)(\xi_{1}, \dots, \xi_{n-1}) := \frac{1}{k!(n-1-k)!\omega_{n-k}} \sum_{\sigma \in S(n-1)} \operatorname{sgn}(\sigma) \left\langle \bigwedge_{i=1}^{k} \Pi_{1}\xi_{\sigma(i)} \wedge \bigwedge_{i=k+1}^{n-1} \Pi_{2}\xi_{\sigma(i)} \wedge u, \Omega_{n} \right\rangle,$$

where $\xi_1, \ldots, \xi_{n-1} \in \mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$. A straightforward calculation shows that

$$\langle a_{\mathcal{K}}(x,u),\varphi_{k}(x,u)\rangle = \frac{1}{\omega_{n-k}}\sum_{|I|=n-1-k}\frac{\prod_{i\in I}k_{i}(x,u)}{\prod_{i=1}^{n-1}\sqrt{1+k_{i}(x,u)^{2}}}$$

for \mathcal{H}^{n-1} almost all $(x, u) \in \operatorname{Nor} K$, hence

$$T_{\mathcal{K}}(\mathbf{1}_{\eta}\varphi_{k})=\Lambda_{k}(\mathcal{K},\eta).$$

Current representation of $\varphi_k^{r,s,1}$

Let
$$n \ge 3$$
, $k \in \{1, \dots, n-2\}$ and $r, s \in \mathbb{N}_0$. Let $(x, u) \in \mathbb{R}^{2n}$ and $\mathbf{v} = (v_1, \dots, v_{r+s+2}) \in (\mathbb{R}^n)^{r+s+2}$. For $\xi_1, \dots, \xi_{n-1} \in \mathbb{R}^{2n}$, define

$$\widetilde{\varphi}_{k}^{r,s}(x,u;\mathbf{v};\xi_{1},\ldots,\xi_{n-1}) := \frac{C_{n,k}^{r,s}}{(k-1)!(n-1-k)!} x^{r}(v_{1},\ldots,v_{r}) u^{s}(v_{r+1},\ldots,v_{r+s})$$
$$\times \sum_{\sigma \in S(n-1)} \operatorname{sgn}(\sigma) \left\langle v_{r+s+1}, \Pi_{1}\xi_{\sigma(1)} \right\rangle \left\langle v_{r+s+2} \wedge \bigwedge_{i=2}^{k} \Pi_{1}\xi_{\sigma(i)} \wedge \bigwedge_{i=k+1}^{n-1} \Pi_{2}\xi_{\sigma(i)} \wedge u, \Omega_{n} \right\rangle.$$

For fixed x, u, \mathbf{v} , the map

$$\widetilde{\varphi}_{k}^{r,s}(x,u;\mathbf{v};\cdot):(\mathbb{R}^{2n})^{n-1}
ightarrow\mathbb{R}$$

is multilinear and alternating, hence an element of $\bigwedge^{n-1} \mathbb{R}^{2n}$.

Current representation of $\varphi_{k}^{r,s,1}$

Symmetrization gives

$$\varphi_{k}^{r,s}(x, u; \mathbf{v}; \xi_{1}, \dots, \xi_{n-1}) \\ := \frac{1}{(r+s+2)!} \sum_{\tau \in S(r+s+2)} \widetilde{\varphi}_{k}^{r,s}(x, u; v_{\tau(1)}, \dots, v_{\tau(r+s+2)}; \xi_{1}, \dots, \xi_{n-1}).$$

Then

Т

$$\varphi_k^{r,s}(x,u) : (\xi_1, \dots, \xi_{n-1}) \mapsto \varphi_k^{r,s}(x,u; \cdot; \xi_1, \dots, \xi_{n-1})$$

is an $(n-1)$ -covector of \mathbb{T}^{r+s+2} , i.e. $\in \bigwedge^{n-1}(\mathbb{R}^{2n}, \mathbb{T}^{r+s+2})$.
The map

$$\varphi_k^{r,s}: \mathbb{R}^{2n} \to \bigwedge^{n-1}(\mathbb{R}^{2n}, \mathbb{T}^{r+s+2}), \qquad (x, u) \mapsto \varphi_k^{r,s}(x, u),$$

is a differential form of degree n-1 on \mathbb{R}^{2n} with coefficients in \mathbb{T}^{r+s+2} , i.e. $\in \mathcal{E}^{n-1}(\mathbb{R}^{2n}, \mathbb{T}^{r+s+2}) := \mathcal{E}(\mathbb{R}^{2n}, \bigwedge^{n-1}(\mathbb{R}^{2n}, \mathbb{T}^{r+s+2})).$

Properties

For
$$(x, u) \in \mathbb{R}^{2n}$$
, $a \in \bigwedge_{n-1} \mathbb{R}^{2n}$, $\vartheta \in O(n)$:
• $\langle a, \varphi_k^{r,s}(x, u) \rangle \in \mathbb{T}^{r+s+2}$,
• $\langle \vartheta a, \varphi_k^{r,s}(\vartheta x, \vartheta u) \rangle = \vartheta \langle a, \varphi_k^{r,s}(x, u) \rangle$.
where $\vartheta \xi := (\vartheta p, \vartheta q)$ for $\xi = (p, q) \in \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$.

The following lemma justifies these definitions.

Lemma. If $P \in \mathcal{P}^n$ and $\eta \in \mathcal{B}(\Sigma^n)$, then

$$T_{\mathcal{P}}\left(\mathbf{1}_{\eta}\varphi_{k}^{r,s}\right)=\phi_{k}^{r,s,1}(\mathcal{P},\eta).$$

Proof For $P \in \mathcal{P}^n$ and $\eta \in \mathcal{B}(\Sigma^n)$, we show that

$$\begin{aligned} T_P\left(\mathbf{1}_{\eta}\widetilde{\varphi}_k^{r,s}(\cdot;\mathbf{v};\cdot)\right) &= & C_{n,k}^{r,s}\sum_{F\in\mathcal{F}_k(P)}Q_{L(F)}(v_{r+s+1},v_{r+s+2}) \\ &\times \int_{\eta\cap(F\times\nu(P,F))}x^r(v_1,\ldots,v_r)u^s(v_{r+1},\ldots,v_{r+s})\mathcal{H}^{n-1}(\mathbf{d}(x,u)), \end{aligned}$$

Proof For $P \in \mathcal{P}^n$ and $\eta \in \mathcal{B}(\Sigma^n)$, we show that

$$\begin{aligned} T_P\left(\mathbf{1}_{\eta}\widetilde{\varphi}_k^{r,s}(\cdot;\mathbf{v};\cdot)\right) &= & C_{n,k}^{r,s}\sum_{F\in\mathcal{F}_k(P)}Q_{L(F)}(v_{r+s+1},v_{r+s+2}) \\ &\times \int_{\eta\cap(F\times\nu(P,F))}x^r(v_1,\ldots,v_r)u^s(v_{r+1},\ldots,v_{r+s})\mathcal{H}^{n-1}(\mathbf{d}(x,u)), \end{aligned}$$

For this, we start from the disjoint decomposition

$$\eta \cap \operatorname{Nor} P = \bigcup_{j=0}^{n-1} \bigcup_{F \in \mathcal{F}_j(P)} \eta \cap (\operatorname{relint} F \times \nu(P, F))$$

and use information about $k_i(x, u) \in \{0, \infty\}$ available for polytopes, when $(x, u) \in F \times \nu(P, F)$ for a *j*-face *F* of *P*: exactly *j* of the $k_i(x, u)$ are zero.

Lemma

- (a) For $K \in \mathcal{K}^n$, T_K is a cycle.
- (b) The map $K \mapsto T_K$ is a valuation on \mathcal{K}^n .
- (c) If K_i, K ∈ Kⁿ, i ∈ N, and K_i → K in the Hausdorff metric, as i → ∞, then T_{K_i}(φ) → T_K(φ) for all differential forms φ of degree n − 1 on ℝ²ⁿ.

Lemma

(a) For $K \in \mathcal{K}^n$, T_K is a cycle.

(b) The map $K \mapsto T_K$ is a valuation on \mathcal{K}^n .

(c) If K_i, K ∈ Kⁿ, i ∈ N, and K_i → K in the Hausdorff metric, as i → ∞, then T_{K_i}(φ) → T_K(φ) for all differential forms φ of degree n − 1 on ℝ²ⁿ.

Theorem The map $\mathcal{K}^n \times \mathcal{B}(\Sigma^n) \to \mathbb{T}^{r+s+2}$ defined by $(K, \eta) \mapsto T_K(\mathbf{1}_\eta \varphi_k^{r,s})$, satisfies the properties (a) – (d). Hence

$$\phi_k^{r,s,1}(K,\eta) := T_K\left(\mathbf{1}_\eta \varphi_k^{r,s}\right)$$

defines a weakly continuous extension of the functional first introduced for polytopes.

Remarks

$$\phi_k^{0,s,1}(P,\Sigma^n) = Q \Phi_k^{0,s}(P) - 2\pi(s+2) \Phi_k^{0,s+2}(P).$$

- More involved relations are available for $\phi_k^{r,s,1}$.
- We have

$$\phi_{k}^{r,s,1}(K,\eta) = C_{n,k}^{r,s} \int_{\eta \cap \operatorname{Nor} K} x^{r} u^{s} \sum_{i=1}^{n-1} b_{i}(x,u)^{2} \sum_{|I|=n-1-k \atop i \notin I} \frac{\prod_{j \in I} k_{j}(x,u)}{\mathbb{K}(x,u)} \mathcal{H}^{n-1}(d(x,u)).$$

This simplifies for k = 1, n - 2. If n = 3, for instance,

$$\phi_1^{r,s,1}(K,\eta) = C_{3,1}^{r,s} \int_{\eta \cap \operatorname{Nor} K} x^r u^s \frac{k_1(x,u)b_2(x,u)^2 + k_2(x,u)b_1(x,u)^2}{\mathbb{K}(x,u)} \mathcal{H}^2(\operatorname{d}(x,u)).$$

If *K* is smooth, this simplifies further.

Theorem For $p \in \mathbb{N}_0$, let $T_p(\mathcal{K}^n)$ denote the real vector space of all mappings $\Gamma : \mathcal{K}^n \times \mathcal{B}(\Sigma^n) \to \mathbb{T}^p$ with the following properties.

(a) $\Gamma(K, \cdot)$ is a \mathbb{T}^{p} -valued measure, for each $K \in \mathcal{K}^{n}$;

- (b) Γ is isometry covariant;
- (c) Γ is locally defined;
- (d) is weakly continuous.

Then a basis of $T_p(\mathcal{K}^n)$ is given by the mappings $Q^m \phi_k^{r,s,j}$, where $m, r, s \in \mathbb{N}_0$ and $j \in \{0, 1\}$ satisfy 2m + 2j + r + s = pand where $k \in \{0, ..., n - 1\}$, but j = 0 if $k \in \{0, n - 1\}$. The preceding theorem is essentially equivalent to (follows from) the next theorem.

Theorem Let $p \in \mathbb{N}_0$. Let $\Gamma : \mathcal{K}^n \times \mathcal{B}(\Sigma^n) \to \mathbb{T}^p$ be a mapping with the following properties.

(a) $\Gamma(K, \cdot)$ is a \mathbb{T}^{p} -valued measure, for each $K \in \mathcal{K}^{n}$;

(b) Γ is translation invariant and rotation covariant;

- (c) Γ is locally defined;
- (d) is weakly continuous.

Then Γ is a linear combination, with constant coefficients, of the mappings $Q^m \phi_k^{0,s,j}$, where $m, s \in \mathbb{N}_0$ and $j \in \{0,1\}$ satisfy 2m + 2j + s = p and where $k \in \{0, \dots, n-1\}$, but j = 0 if $k \in \{0, n-1\}$.

Ideas of Proof

- ► Reduction to fixed degreee of homogeneity $k \in \{1, ..., n-2\}$ and $n \ge 3$.
- On polytopes P the mapping Γ is of the form

$$\Gamma(P,\cdot) = \sum_{\substack{m,j,s \geq 0 \\ 2m+2j+s=
ho}} c_{mjs} Q^m \phi_k^{0,s,j}(P,\cdot)$$

with constants c_{mjs} . Γ and the mappings $\phi_k^{0,s,0}$ and $\phi_k^{0,s,1}$ are weakly continuous. The mapping Γ' defined by

$$\Gamma' := \Gamma - \sum_{\substack{m,j,s \ge 0, j \le 1\\ 2m+2j+s=p}} c_{mjs} Q^m \phi_k^{0,s,j}$$

satisfies (a) - (d), on polytopes P it is of the form

$$\Gamma'(\boldsymbol{P},\cdot) = \sum_{\substack{m,s \geq 0, j \geq 2 \\ 2m+2j+s=p}} c_{mjs} Q^m \phi_k^{0,s,j}(\boldsymbol{P},\cdot).$$

Show that the constants c_{mjs} with $j \ge 2$ are zero.

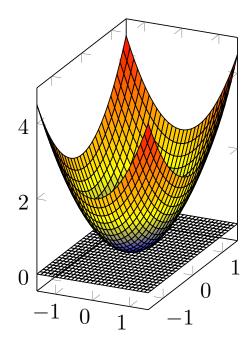
Let K_h be a cap of height h cut off from a paraboloid of revolution with axis ℝe_n.

- Let K_h be a cap of height h cut off from a paraboloid of revolution with axis ℝe_n.
- Clearly, K_h has plenty of rotational symmetries.

- Let K_h be a cap of height h cut off from a paraboloid of revolution with axis ℝe_n.
- Clearly, K_h has plenty of rotational symmetries.
- Approximate K_h by a sequence of inscribed polytopes with limited symmetries:
 - ► choose a cubical grid of width 2t, t > 0, in ℝⁿ⁻¹ and lift its vertices to the paraboloid;
 - let $P_{t,h}$ be the convex hull of these lifted points;
 - note that $P_{t,h} \rightarrow K_h$ as $t \rightarrow 0+$.

- Let K_h be a cap of height h cut off from a paraboloid of revolution with axis ℝe_n.
- Clearly, K_h has plenty of rotational symmetries.
- Approximate K_h by a sequence of inscribed polytopes with limited symmetries:
 - ► choose a cubical grid of width 2t, t > 0, in ℝⁿ⁻¹ and lift its vertices to the paraboloid;
 - let P_{t,h} be the convex hull of these lifted points;
 - note that $P_{t,h} \rightarrow K_h$ as $t \rightarrow 0+$.
- The faces of P_t can be described explicitly. The symmetries of P_t can be controlled.

- Let K_h be a cap of height h cut off from a paraboloid of revolution with axis ℝe_n.
- Clearly, K_h has plenty of rotational symmetries.
- Approximate K_h by a sequence of inscribed polytopes with limited symmetries:
 - ► choose a cubical grid of width 2t, t > 0, in ℝⁿ⁻¹ and lift its vertices to the paraboloid;
 - let P_{t,h} be the convex hull of these lifted points;
 - note that $P_{t,h} \rightarrow K_h$ as $t \rightarrow 0+$.
- The faces of P_t can be described explicitly. The symmetries of P_t can be controlled.
- We show that the covariance properties of Γ'(P_{t,h}, ·) are restricted so strongly that this can be extended to the limiting case. This finally leads to a contradiction with the covariance properties of Γ'(K_h, ·) if Γ' ≠ 0.



The remaining part of the proof requires a combination of (elementary) algebraic and geometric considerations as well as approximation arguments. We write again Γ instead of Γ' and

$$\Gamma(K,f) := \int_{\Sigma^n} f(u) \, \Gamma(K, \mathbf{d}(x, u))$$

for $K \in \mathcal{K}^n$ and a continuous real function f on \mathbb{S}^{n-1} . For a polytope $P \in \mathcal{P}^n$, we define

$$W_k(P,f) := \sum_{F \in \mathcal{F}_k(P)} \mathcal{H}^k(F) \int_{\nu(P,F)} f \, \mathrm{d}\mathcal{H}^{n-k-1}$$

Lemma Let s_0 be the smallest number s for which $c_{mjs} \neq 0$ for some m, j, set $q := (p - s_0)/2$ and $c_j := ((2q)!s_0!/p!)c_{(q-j)js_0}C_{n,k}^{0,s_0}$. Let d be the largest $j \in \{2, ..., q\}$ for which $c_j \neq 0$. Let $\omega \in \mathcal{B}(\mathbb{S}^{n-1})$ and $0 < \varepsilon < 1$ be such that ω is ε -close to $-e_n$. Let f be a nonnegative, continuous real function on \mathbb{S}^{n-1} with support in ω . For $P \in \mathcal{P}^n$, define

$$\Delta(P, f) := \sum_{j=2}^{d} c_{j}Q^{q-j} \sum_{F \in \mathcal{F}_{k}(P)} Q_{L(F)}^{j}\mathcal{H}^{k}(F) \int_{\nu(P,F)} f \, \mathrm{d}\mathcal{H}^{n-k-1} \in \mathbb{T}^{2q}.$$

Let $E' := (\underbrace{a, \ldots, a}_{2q})$ with $a \in \mathbb{R}^{n-1}, ||a|| = 1$ and
 $E := (b_{1}, \ldots, b_{p}) := (\underbrace{a, \ldots, a}_{2q}, \underbrace{-e_{n}, \ldots, -e_{n}}_{s_{0}}).$

Then

$$|\Gamma(P,f)(E) - \Delta(P,f)(E')| \leq C_3 W_k(P,f)\varepsilon$$

with a constant C_3 depending only on Γ .

We apply this approximation to the polytopes $P_{t,h}$ to get

$$\begin{split} &\Gamma(P_{h,t},f)(E) \\ &= \sum_{j=2}^{d} c_{j} \sum_{i=1}^{b(n,k)} \sum_{F \in \mathcal{F}_{k,h}^{i}(P_{h,t})} (Q^{q-j}Q_{L_{i}}^{j})(E')\mathcal{H}^{k}(F) \int_{\nu(P_{h,t},F)} f \, \mathrm{d}\mathcal{H}^{n-k-1} + R_{5}(E) \\ &= b(n,k)^{-1} W_{k}(P_{h,t},f) \left(\sum_{j=2}^{d} c_{j}Q^{q-j} \sum_{i=1}^{b(n,k)} Q_{L_{i}}^{j} \right) (E') + R_{5}(E) \end{split}$$

with

$$|R_5(E)| \leq C_5 W_k(P_{h,t}, f)\varepsilon,$$

where C_5 depends only on Γ .

This approximation is crucial for the next lemma.

Lemma Let $n \ge 4$. Under the assumptions made above, there exist a convex body $K \in \mathcal{K}^n$, a continuous function f on \mathbb{S}^{n-1} , a *p*-tuple *E*, and a rotation $\vartheta \in O(n)$ such that *K* and *f* are invariant under ϑ , but $\Gamma(K, f)(\vartheta E) \neq \Gamma(K, f)(E)$.

The proof of this lemma involves the study of the polynomials

$$\sum_{j=2}^{d} c_j (x_1^2 + \cdots + x_n^2)^{q-j} \sum_{l \subset \{1, \dots, n\}, |l| = k} \left(\sum_{i \in I} x_i^2 \right)^j.$$

It is tempting to believe that $c_2 = \ldots = c_d = 0$ if this polynomial is rotation invariant. However, this is not true (not even for n = 2) and this is precisely the reason why several cases have to be distinguished and additional geometric arguments are required. If this is proved, then the invariance of *K* and *f* under ϑ and the rotation covariance of Γ give

$$\Gamma(K, f)(\vartheta E) = \Gamma(\vartheta K, \vartheta f)(\vartheta E) = \Gamma(K, f)(E).$$

This is a contradiction, which finishes the proof of Theorem 5.1 for $n \ge 4$.

For n = 3 an thus k = 1 (and d odd) we work with a more flexible (depending on d) triangular complex in \mathbb{R}^2 and with Minkowski averages of the polytopes obtained by lifting the vertices of this complex.